

RASPBERRY PI

INSTALLATION GUIDE

REQUIRED ITEMS

• A Raspberry Pi (Either a <u>Model B</u> or <u>Model B+</u>)

- SD Card
 - We recommend an 8GB class 4 SD card.
- Display and connecting cables
 - Any HDMI/DVI monitor or TV should work as a display for the Pi.
 - For best results, use one with HDMI input, but other connections are available for older devices.
- Keyboard and mouse
 - Any standard USB keyboard and mouse will work with your Raspberry Pi.
- Power supply
 - Use a <u>5V micro USB power supply</u> to power your Raspberry Pi. Be careful that whatever power supply you use outputs at least 5V; insufficient power will cause your Pi to behave unexpectedly.
- Internet connection
 - To update or download software, we recommend that you connect your Raspberry Pi to the internet either via an Ethernet cable or a WiFi adaptor.
- Sound
 - Headphones, earphones or speakers with a 3.5mm jack will work with your Raspberry Pi.

RASPBERRY PI

INSTALLING RASBIAN DEBIAN WHEEZY OPERATING SYSTEM USING WINDOWS

- <u>http://downloads.raspberrypi.org/raspbian_latest</u>
 Dowload the file "RASPBIAN Debian Wheezy.zip" and extract the image file.
- Insert the SD card into your SD card reader(format the sd card) and check which drive letter was assigned. You can easily see the drive letter (for example G:) by looking in the left column of Windows Explorer. You can use the SD Card slot (if you have one) or a cheap SD adaptor in a USB port.
- Download the Win32DiskImager utility from the Sourceforge Project page (it is also a zip file); you can run this from a USB drive. <u>http://sourceforge.net/projects/win32diskimager/files/latest/download</u>
- Extract the executable from the zip file and run the **Win32DiskImager** utility; you may need to run the utility as administrator. Right-click on the file, and select Run as administrator.
- Select the image file you extracted above.
- Select the drive letter of the SD card in the device box. Be careful to select the correct drive; if you get the wrong one you can destroy your data on the computer's hard disk!
 If you are using an SD card slot in your computer and can't see the drive in the Win32DiskImager window, try using a cheap SD adaptor in a USB port.
- Click Write and wait for the write to complete.
- Exit the imager and eject the SD card

FORMAT THE SD CARD

Locate your SD card drive, in Windows Explorer, and secondary-click the mouse to bring up the context-senstive menu. From the menu select **Format**.... Ensure that the option **FAT32** (**Default**) is selected and click **Start**.

Open	
Open in new window Open AutoPlay	
Share with Open as Portable Device	
Format	er
Eject	Date modified
Cut	9/6/2013 10:32
Сору	10/2/2012 10:2
Create shortcut	9/6/2013 10:34
Rename	9/6/2013 10:31
Properties	

Selecting an SD card to format

A few moments later you will see a confirmation that the format has been completed and you SD card is now ready for the next stage.

Capacity:	
7.63 GB 👻	
File system	+
FAT32 (Default)	1
Allocation unit size	
4096 bytes 🔹	
Restore device defaults	
Raspian	
Format options	
♥ Quick Format □ Create an MS-DOS startup disk	
Start Close	

Formatting the SD card

USING WIN32DISKIMAGER

Having plugged in your SD card, (re)start Win32Diskimager. Choose the drive you want to copy the image to (in my case F:).

• choose the drive with your SD card to write the OS image on

Then click on the folder icon and choose the unzipped .img file from earlier that you want to put on the SD card. Then click Write, to write the Operating system on the card from the .img file.

😒 Win3	32 Disk Ima	ger		
Image F	File			Device
				[F:\] -
MD5	Hash:			[F:\]
Brogros				
riogres	5			
	Cancel	Read	Write	Exit
			·	

• Write OS image from .img file to SD card

You will then be asked to confirm. Check carefully that you are writing to the correct device and if so, click Yes.

🍫 Win32 Disk Imager		X
Image File		Device
.5-wheezy-raspbian/2012-07-15-wheezy-ra	spbian.img 📔	[F:\] ▼
MD5 Hash:		
Progress		
Cancel Read	Write	Exit
Write data in 'Image File' to 'Device'		t

Check device and confirm

The progress bar will show you how far it's got.

• **Progress indicator** When it's finished it looks like this.

🧐 😽	/in32 Disk Ima	ger 👘 🛲		
Imag	ge File			Device
.5-wh	eezy-raspbian/2	012-07-15-whee	ezy-raspbian.img	[F:\] •
Prog	D5 Hash: ress			38%
	Cancel	Read	Write	Exit
9.72	763MB/s		·	

• Finished

Then you can eject the card reader and remove the SD card. Then you can try it out in your Raspberry Pi

🎭 Win32 Disk Ima	ger		
Image File			Device
.5-wheezy-raspbian/2	012-07-15-whee	ezy-raspbian.img	[F:\]
MD5 Hash: Progress			
Cancel	Read	Write	Exit
Done.		, <u> </u>	· · · · · · · · · · · · · · · · · · ·

PLUGGING IN YOUR RASPBERRY PI

- 1. Begin by slotting your SD card into the SD card slot on the Raspberry Pi, which will only fit one way.
- 2. Next, plug in your USB keyboard and mouse into the USB slots on the Raspberry Pi. Make sure that your monitor or TV is turned on, and that you have selected the right input (e.g. HDMI 1, DVI, etc).
- 3. Then connect your HDMI cable from your Raspberry Pi to your monitor or TV.
- 4. If you intend to connect your Raspberry Pi to the internet, plug in an Ethernet cable into the Ethernet port next to the USB ports; if you do not need an internet connection, skip this step.
- 5. Finally, when you are happy that you have plugged in all the cables and SD card required, plug in the micro USB power supply. This action will turn on and boot your Raspberry Pi.
- 6. If this is the first time your Raspberry Pi SD card have been used, then you will have to select an operating system and configure it.

LOGGING INTO YOUR RASPBERRY PI

- 1. Once your Raspberry Pi has completed the boot process, a login prompt will appear. The default login for Raspbian is username pi with the password raspberry. Note you will not see any writing appear when you type the password. This is a security feature in Linux.
- After you have successfully logged in, you will see the command line prompt pi@raspberrypi~\$.
- 3. To load the graphical user interface, type startx and press Enter on your keyboard.

DOWNLOAD AND INSTALL WIRING PI

WiringPi is maintained under GIT for ease of change tracking, however there is a Plan B if you're unable to use GIT for whatever reasons (usually your firewall will be blocking you, so do check that first!)

ONLINE INSTALL

If you do not have GIT installed, then under any of the Debian releases (e.g. Raspbian), you can install it with:

sudo apt-get install git-core

If you get any errors here, make sure your Pi is up to date with the latest versions of Raspbian:

sudo apt-get update sudo apt-get upgrade

To obtain WiringPi using GIT: **git clone git://git.drogon.net/wiringPi** If you have already used the clone operation for the first time, then

cd wiringPigit pull originWill fetch an updated version then you can re-run the build script below.

To build/install there is a new simplified script:

cd wiringPi

./build

The new build script will compile and install it all for you – it does use the sudo command at one point, so you may wish to inspect the script before running it.

OFFLINE INSTALL

Click on this URL: (it should open in a new page) https://git.drogon.net/?p=wiringPi;a=summary

Then look for the link marked snapshot at the right-hand side. You want to click on the top one. This will download a tar.gz file with a name like wiringPi-98bcb20.tar.gz. Note that the numbers and letters after wiringPi (98bcb20 in this case) will probably be different – they're a unique identifier for each release.

You then need to do this to install:

tar xfz wiringPi-98bcb20.tar.gz cd wiringPi-98bcb20 ./build Note that the actual filename will be different – you will have to check the name and adjust accordingly.

TEST WIRINGPI'S INSTALLATION

run the gpio command to check the installation:

gpio -v gpio readall That should give you some confidence that it's working OK.

WiringPi is released under the GNU Lesser Public License version 3.

TESTING SERIAL PORT IN RASPBERRY PI

A great way to test out the serial port is to use the minicom program. If you dont have this installed run

sudo apt-get install minicom

Connect your PC to the Raspberry Pi serial port using an appropriate serial port adapter and wiring, then open Putty or a similar serial terminal program on PC side. Setup a connection using the serial port at 9600 baud.

Now run up minicom on the Raspberry Pi using

minicom -b 9600 -o -D /dev/ttyAMA0

What you type into the minicom terminal screen should appear on the serial PC terminal and vice versa.

GETTING RASPBERRY PI WINDOW IN WINDOWS SYSTEM:

To get raspberry pi window we have to download and install two software's PuTTY and Xming. PuTTY is an SSH and telnet client, developed originally by Simon Tatham for the Windows platform. PuTTY is open source software that is available with source code and is developed and supported by a group of volunteers. **Xming** is an X11 display server for Microsoft Windows operating systems, including Windows XP or later. Following steps illustrates the installing and configuring PuTTy and Xming.

Step1:

Download and install PuTTY using below site.

http://www.chiark.greenend.org.uk/~sgtatham/putty/

Step2:

Download and install Xming using below site.

http://www.straightrunning.com/xmingnotes/

Step3: Configure PuTTY as shown below figures

Step 4:

Login with defaulte User name and Password. Default name is pi and password is raspberry.

Step5: Start xming

Step6:

Type startlxde on terminal

After pressing enter we can see Raspberry Pi window like this

ACCESSING RASPBERRY FILES IN WINDOWS MACHINE:

If we want to copy ,delet files from RasPi or from windows then its possible by using spftware called winSCP. Below illustrates the procedure.

Step1: Download and install winSCP software here

https://winscp.net/eng/download.php#download2

Step2:

Open winSCP and type RasPi IP address.

Login - WinSCP	
New Site	Session File protocol: SFTP Host name: 192.168.1.125 User name: Save Advanced Your Rspberry pi IP address
Tools Manage	Login T Close Help

Step2:

Next it asks for user name and password. Type Raspberry pi default username and password i.e pi and raspberry

Su Username - 192.168.1.125 - WinSCP	Bassword - 192.168.1.125 - WinSCP
Searching for host	Searching for host
Connecting to host	Connecting to host
Authenticating	Authenticating
	Password:
Username:	•••••
pi	Remember password for this session
OK Cancel <u>H</u> elp	OK Cancel Help

Step3:

We can see the Raspberry pi folders in winSCP .

pi - 192.168.1.125 - WinSCP			<mark>رچک</mark> pi@raspberrypi: ~	
Local Mark Files Commands Session Options Remote	Help		login as: pi	,
🔛 🚟 🛱 Synchronize 🔲 🗗 👔 🕼 💷 🕼 Que	ue 🔹 Transfer Settings Default	• 👩 •	p10192.168.1.125's password: Linux raspberrypi 3.18.7-v7+ ‡755 SMP PREEMPT Thu Feb 12 17	:20:48 GMT 2015 armv7
📮 192.168.1.125 🙀 New Session			1	
🛾 Mydx • 🛃 🔽 (+ • + + • 🖬 🖬 🏠 🛃 🗞	🔒 pi + 🚰 🔽 (+ + + +) 🗄	🔁 🏠 🖁 🕺	The programs included with the Debian GNU/Linux system are	free software;
🕼 Unload 🕼 🛛 Edit 🕱 🔏 🕞 Properties 🄌 🗐	E Download R D Edit X 4	» ∓ »	the exact distribution terms for each program are described	in the
Cillisercicanthochilloruments	/home/ni	:0	individual files in /usr/share/doc/*/copyright.	
	/itomorpi		Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the	extent
Name Size Type	Name Siz	e Changed	permitted by applicable law.	
🖕 Parent directory	↓ .	6/20/2014 5:48:23	Last login: Mon Oct 19 05:58:17 2015 from 192.168.1.104	
📙 Arduino 🛛 👘 File folder	📙 Desktop	10/14/2015 5:54:4	pi@raspberrypi ~ \$ ls	2010U 20
JASUS File folder	📕 gnublin	10/14/2015 5:58:3	nusklop	relay.py
Untitled_TMP File folder	📙 py-spidev	10/14/2015 6:21:1	gnublin-api	robot
ipmsg.log 1 KB Text Document	python_games	3/10/2013 10:20:0	i2c.py	sd
Untitled.ino 1 KB INO File	🔒 robot	10/13/2015 6:20:0	index.html?p=linux%2Fkernel%2Fgit%2Ftorvalds%2Flinux.git	servo.py
	📙 sd	10/15/2015 6:34:1	index.html?p=linux%2Fkernel%2Fgit%2Ftorvalds%2Flinux.git.1	temp2.sh
	📙 wiringPi	10/14/2015 5:57:1	minicom.log	temperature.py
	gnublin-api 60 Ki	3 10/14/2015 6:55:3	ocr_pi.png	temp.sn
	🛃 iZc.py 1 Ki	3 10/14/2015 11:41:	Dwm. DV. save	test.c
	index.html?p=linux% 16 Ki	3 10/15/2015 8:06:5	py-spidev	test.c.save
	index.html?p=linux% 16 Ki	3 10/15/2015 8:14:4	python games	wiringPi
	minicom.log 1 Ki	3 10/13/2015 11:09:	pi@raspberrypi ~ \$ 🛛	
/	Nocr_pi.png 6 Ki	3 2/3/2013 5:07:45		
Raspberry pi	Pwm.py 1 Ki	3 10/15/2015 11:25:		
folders in	pwm.py.save 1 Ki	3 10/15/2015 11:04:		
winSCD	🛃 relay.py 1 Ki	3 10/17/2015 8:35:1		
WIIISCF	relay.py.save 1 K8	3 10/17/2015 7:13:5		
	🛃 servo.py 1 Ki	3 10/15/2015 11:21;		
	temp.sh 1 Ki	3 10/14/2015 11:42:		
	temp2.sh 1 Ki	3 10/14/2015 10:56:		
	temperature.py 1 Ki	3 10/14/2015 9:09:2		
	test 10 Ki	3 10/15/2015 8:37:0 🚽		
•	•	+		
0 B of 382 B in 0 of 5 4 hidden	0 B of 136 KB in 0 of 24	15 hidden		
	🔒 SCP	0:01:24		T

BASIC LINUX COMMANDS:

Raspberry Pi uses Linux as its standard operating system, which is an operating system loosely based on the Unix operating system. It has always been a free and open source, written in C programming language and was originally designed to run on Intel's x86-based computers. To interact with RasPi we have to use command-Line Interface, where we are going to be doing a lot of work.

To get around in the Linux CLI, we have to use the file system commands such as cd and ls. Commands to run the programs are run from the terminal as well. Some of the common Linux commands are listed in table below.

Command	Meaning
ls	List files in current directory
cd	Change directory
Pwd	Print working directory
rm filename	Remove <i>filename</i>
mkdir directory name	Make a directory with <i>directory name</i>
rmdir directory name	Remove empty directory
cat <i>textfile</i>	Display contents of <i>textfile</i> in the
	terminal
mv oldfile newfile	Move <i>oldfile</i> to <i>newfile</i>
cp oldfile newfile	Copy oldfile to newfile
Man command	Display manual of <i>command</i>
Date	Reads systems date/time
Echo	Echo types back in the terminal
Grep	Search program that uses regular
	expressions
Sudo	Perform as root user
./program	Run program
Exit	Quit terminal session

BLINKING LED:

The first experiment usually in hardware is blinking of an led. Below procedure shows how to blink an led using Raspberry pi.

Component required:

Raspberry pi LED Resistor-220 ohm Breadboard Wires

Circuit :

Program:

#santhosh SJEC

gpio mode 0 out (1)

while (true); (2)

do

gpio write 0 0 (3)

sleep 0.2 (4)

gpio write 0 1 (5)

sleep 0.2 (6)

done (7)

- (1) Here mode 0 of raspberry gpio that is pin no 17 where the LED is connected is selected as an output
- (2) Next is a while loop which is an infinite loop
- (3) gpio write 0 0 this command writes 0 to mode 0 pin that is writes 0 to pin no 17 which turns LED off
- (4) sleep 0.2 is a delay function that is LED is off for the period of 2ms
- (5) gpio write 0 1 this command writes 1 to mode 0 pin that is writes 1 to pin no 17 which turns LED on
- (6) sleep 0.2 sleep 0.2 is a delay function that is LED is off for the period of 2msSince this is inside while loop process is repeated forever

Output:

DIMMING LIGHT USING PWM:

PWM is a technique for controlling power. Below experiment shows how this technique is used to control the brightness of LED using python code.

Component requires: Raspberry pi LED Resistor-220 ohm Breadboard Wires

Circuit:

Program : # PWM program for controlling led

import RPi.GPIO as GPIO import time GPIO.setmode(GPIO.BCM) GPIO.setup(18,GPIO.OUT) p=GPIO.PWM(18,50) p.start(10) #importing GPIO librarie #importing time

#LED is connected to pin no 11 #this initialises frequency of 50Hz # starting PWM with duty cycle of 10

while True: for i in range(100): p.ChangeDutyCycle(i)

www.researchdesignlab.com

```
print i
time.sleep(0.02)
print"****************
for j in range(100):
p.ChangeDutyCycle(100-j)
time.sleep(0.02)
```

p.stop()

GPIO.cleanup()

SERVO MOTOR DIRECTION CONTROL USING PWM:

Components required: Raspberry pi Servo motor Can buy from: <u>http://researchdesignlab.com/index.php/robotics-kits/servo-motor.html</u>

Wires

www.researchdesignlab.com

GPIO.cleanup

Connection/output:

SENDING E-MAIL FROM RASPBERRY PI:

Step1: Sending mail from Raspberry Pi

To send mail from RasPi we have to install some important packages as follows. First, we have to download and install ssmtp package which is used to send e-mails, stands for simple mail transport protocol. We also have to install mailutils which is setup libraries for handling e-mails, which can be done by using the command, shown in fig 6 (a)

"sudo apt-get install ssmtp mailutils"

Once the installation is completed, we need to edit the ssmtp configuration files by using command

"sudo nano etc/ssmtp/ssmtp.conf".

In configuration file first we have to set mail hub, here I have set mail hub to gmail.com with port no 465, that is by writing

"mailhub=smtp.gmail.com:465".

Next we have to add following three lines

AuthUser = santhuraspberrygmail.com

AuthPass= santhu141986

UserSTARTTLS=YES

UseTLS=YES

The first two statements indicate the user mail id and his password, here mail id is <u>santhuraspberry@gmail.com</u> and password is santh141986. The next two statements are for encryption. Figure below shows after configuration

🖗 pi@raspberrypi: ~	물 [®] pi@raspberrypi: ~	analysis to be a bar has been and
GNU nano 2.2.6	File: /etc/ssmtp/ssmt	File: /etc/ssmtp/ssmt
<pre># # Config file for sSMTP sendmail # # Config file for sSMTP sendmail # # The person who gets all mail for userids < 1000 # Make this empty to disable rewriting. root=postmaster # The place where the mail goes. The actual machine # MX records are consulted. Commonly mailhosts are r mailhub=gmail</pre>	<pre># Config file for sSMTP sendm # # The person who gets all mai # Make this empty to disable root=postmaster # The place where the mail go # MX records are consulted. O mailhub=smtp.gmail.com:465 amed mail.domain.com # Where will the mail seem to # transite Domain=</pre>	mail il for userids < 1000 rewriting. oes. The actual machine name is required no Commonly mailhosts are named mail.domain.com o come from?
# Where will the mail seem to come from? #rewriteDomain=	flewriteBomain− ‡ The full hostname hostname=raspberrypi	
# The full hostname hostname=raspberrypi	AuthUser=santhuraspberry@gmai AuthPass=santhu141986 UserSTARTLS=YES	il.com
# Are users allowed to set their own From: address? # YES - Allow the user to specify their own From: ad # NO - Use the system generated From: address #FromLineOverride=YES	UseTLS=YES # Are users allowed to set th # YES - Allow the user to spe # NO - Use the system generat #FromLineOverride=YES	heir own From: address? ecify their own From: address ted From: address

After all these settings we are now ready to send a mail. The mail can be sent by using following Linux script

"echo "4SO14LDS09" | mail -s "SJEC" <u>santhuraspberry@gmail.com</u>"

Here first part contains the body of the mail i.e. "4SO14LDS09", second part is the subject, i.e.

"SJEC" and the third part is the address of the e-mail will be sent to.

USING MJPEG-STREAMER TO STREAM VIDEO OVER HTTP:

This project illustrates how we can connect our webcam to the internet and perform live video streaming. To do this what we required is mjpeg_streamer program that gets the MJPG data from V4L2 and send it through an HTTP session. MJPG-streamer, is a command line application that copies JPG-frame from single input plugin to multiple output plugins. It can be used to stream a JPEG over an IP based network from the webcam to the viewer like a Firefox, etc. Mjpeg streamer automatically generates a set of html pages that illustrates different methods to stream the video over our browser.

Step 1: Installing packages needed for MJPG streamer

The following command installs three libraries that MJPG streamer uses

\$ sudo apt-get install libjpeg8-dev imagemagick libv4l-dev

Here the first package being installed is **libjpeg8-dev**, which is used to handle JPEG files. Next package is the **imagemagick**, software to create, edit, compose or convert bitmap images. It is also used to resize,

flip, rotate, distort and transform images. Last packages is the **libv4l-dev** is a collection of libraries which adds a layer top of V4l2 devices. The purpose of this layer is it prevents writing separate code for different devices in the same class

Step 2: Creating symbolic link for videodev.h

The videodev.h is the header file that MJPG-streamer requires. The following command creates the symbolic link, which videodev.h with newer version videodev2.h.

In -s /usr/include/linux/videodev2.h /usr/include/linux/videodev.h

Step 3: Downloading MJPG-Streamer

This step downloads source code for MJPG streamer, which is available at sourceforget.net.

\$ wget <http://sourceforge.net/code-snapshots/svn/m/mj/mjpg-streamer/code/mjpg-

streamer-code-182.zip>

Step 4: Unzip the MJPG-Streamer source code

The source code downloaded is a compressed zip file. It can be unzipped by the following command.

\$ unzip mjpg-streamer-code-182.zip

Step 5: Build MJPG-Streamer

There are several plugins in MJPG - streamer, but only couple of them are needed to stream video. Them command below builds plugins what we needed.

\$ cd mjpg-streamer-code-182/mjpg-streamer

\$ make mjpg_streamer input_file.so output_http.so

Step 6: Copying needed files into system directories

The following command copies needed files into system directories. The first command copies mjpg-streamer to the local directories, second command copies libraries to the local directories and third command copies the files into a local directory.

\$ sudo cp mjpg_streamer /usr/local/bin \$ sudo cp output_http.so input_file.so /usr/local/lib/ \$ sudo cp -R www /usr/local/www

Step 7: Starting MJPG-streamer for the first time

The MJPG streamer can be started by using the following command

mjpg_streamer -i "/usr/local/lib/input_uvc.so -d /dev/video0 -r 640x480 -f 15" -o "/usr/local/lib/output_http.so -p 8080 -w /usr/local/www"

Here "input_uvc.so" captures the JPG frames from a connected webcam and output_http streams on the web with HTTP TCP port 8080. We can view our webcam streaming by opening browser with

http://our IP address>:8080

I2C:

It's a Inter-Integrated Circuit Bus. It's a simple bi-directional 2-wire bus for efficient inter-IC control. No specific wiring or connectors but just PCB tracks. (It's a two wire serial interface)Since a serial Interface it reduces cost of manufacturing of electronic product. " Only two bus lines are required: a serial data line (SDA) and a serial clock line (SCL). Each device connected to the bus is software addressable by a unique address and simple master/slave relationships exist at all times; masters can operate as master-transmitters or as master-receivers. Below procedure shows how to configure Raspberry to use I2C.

Step1:

Make sure your Raspberry Pi is connected to the internet when installing the drivers.

The new Raspbian distro already have the I2C driver installed but they are disabled by default. To enable it all you need to do is comment out a line by putting # in front. At the prompt type.

sudo nano /etc/modprobe.d/raspi-blacklist.conf

then add a # on the 3rd line.

Step2:

Next edit the modules file by:

sudo nano /etc/modules

Add i2c-dev to a new line.

Step3:

Now install the i2c-tools package by:

sudo apt-get install i2c-tools

Step4:

Now add a new user to the i2c group:

sudo adduser pi i2c

Reboot the machine by:

sudo shutdown -r now

www.researchdesignlab.com

Step5:

After the reboot test to see any device connected by:

sudo i2cdetect -y 0

If your board is the Rev 2 type this:

sudo i2cdetect -y 1

if no device is connected to I2C port then we will see something like this:

Now if any device is connected to I2C port then display will be something like this

Connections:

www.researchdesignlab.com

INSTALLING APACHE SERVER AND PHPADMIN:

Step1:

Type the following command on command line to install apache server on raspberry pi

Sudo apt-get install apache2 –y

After successful installation type ip address in web page it will look something like this

192.168.1.1	25 ×	S any adaptation channel with the
← → C	192.168.1.125	

It works!

This is the default web page for this server.

The web server software is running but no content has been added, yet.

Step2: installing phpmyadmin To install php type following command in Raspberry command line

sudo apt-get install phpmyadmin

Step3:

configure apache to work with phpmyadmin

type sudo nano /etc/apache2/apache2.conf

add the line include /etc/phpmyadmin/apache.conf at the end of the line

Step4: restart apache by following command

sudo /etc/init.d/apache2 restart

Step5: now if we type ipaddress/phpmyadmin in web page screen will look something like this

/ 🌺 phpMyAdmin	×	A Contraction of the second seco
← → C □ 192	.168.1.125/phpmyadmin/	
		phpMyAdmin
		Welcome to phpMyAdmin
		English •
		Log in Username: Password:
		Go

WORKING WITH RFID USING RASPBERRY PI:

Components: Raspberry pi USB RFID read Can buy from: <u>http://researchdesignlab.com/usb-rfid-reader.html</u>

Step1: login Rpi

Step2: connect RFID to USB0 port of raspberry i.e first usb port

Step3: install minicom by typing following command

sudo apt-get install minicom

Step 4: Check whether RFID is connected to USB by using Isusb command

Step5: get minicom window by setting baud rate of 9600 and specifying device path path by typing following command

minicom -D /dev/ttyUSB0 -b 9600 -o

Step6: Finally move RFID card over reader you can see card information displaying on minicom serial window

Pi@raspberrypi: ~	J
Welcome to minicom 2.6.1	
OPTIONS: I18n	
Compiled on Apr 28 2012, 19:24:31.	
Port /dev/ttyUSB0	
Press CTRL-A Z for help on special keys	
0008653488	
0008653488	
0008653488	
0008653488	
0008653488	
0008653488	
0008653488	ı
0008653488	1
0008653488	1
0008653488	1
0008653488	L
	ľ
	1
	1

Connection:

SERIAL COMMUNICATION:

1. INTERFACING GSM AND RASPBERRY PI:

Components:

Raspberry Pi

Can buy from: <u>http://researchdesignlab.com/development-baord/raspberry-pi-40/raspberry-</u>pi-model-b.html

GSM SIM900A modem

Can buy from: http://researchdesignlab.com/gsm-sim-900.html

USB to TTL converter

Can buy from: <u>http://researchdesignlab.com/index.php/modules/usb-to-rs232-converter.html</u> Female jumper wires

Can buy from: <u>http://researchdesignlab.com/jumper-wire-female-pack-of-5.html</u>

The following step explains how to communicate external devices serially using serial communication

Step1: initially we have to download and install python serial package called py serial from https://pypi.python.org/pypi/pyserial

Step2: unzip the file and enter into that folder using command cd "package name"

Step3: inside that there will be setup file known as setup.py. install software by running command

sudo python setup.py install

Pi@raspberrypi: ~/pyserial-2.7	
<pre>pi@raspberrypi ~/pyserial-2.7 \$ ls build examples MANIFEST.in pyrecv.py serial CHANGES.txt gsm.py PKG-INFO README.txt sermsg documentation LICENSE.txt pygsm.py receive.py sermsg pi@raspberrypi ~/pyserial-2.7 \$</pre>	serr.py g.py setup.py g.py.save test

Program:

odem
(1)
(2)
(3)
(4)
(5)
(6)

1) This command is used to call serial package which is installed before

2) This command is for delay function

3) Indicates to which USB port device is connected

4) This command is used to make a call from GSM module to specified number

5) It is used to give a delay

6) Closes the serial communication

Run a code by

sudo python 'filename.py'

Case2: Sending message from Raspberry using GSM modem

import serial	(1)
import time(2)	(2)
ser.flush()	(5)
ser.write('AT+CMGS="888xxxxxxx";\r\n') ך	
ser.write('ddddd'+'\r\n')	(4)
ser.write('\x1A')	
time.sleep(10)	(5)
ser.close()	(6)

- 1) This command is used to call serial package which is installed before
- 2) This command is for delay function
- 3) Indicates to which USB port device is connected
- 4) This command is used to send a message from GSM module to specified number
- 5) It is used to give a delay
- 6) Closes the serial communication

Run a code by

sudo python 'filename.py'

🖗 pi@raspberrypi: -/pyserial-2.7		œ ø ₽ <u>7</u>	🛿 🖬 🖬 11:08 ам
pi@raspberrypi ~/pyserial-2.7 \$ sudo python sermsg.py		Wednesday Oct 28	AM 88° Pactiv Clourdy
		AT+CMGS="888 RESEARCH DES Voctions 11:08AM Type text message	1GN LAB 160/1
		Close	View
	E F	Phone Contacte	LO+ Messaging Browser

2. CONNECTING ARDUINO TO RASPBERRY PI:

Step1: firstly we have to install python serial package. Follow the same procedure as mentioned in previous experiment

Step2:

Next we have to install arduino raspberry, which can be done by using command

Sudo apt-get install arduino

Step3: open a sketch and type following program in it

```
void setup(){
Serial.begin(9600);
}
void loop(){
```

```
Serial.println("Hello Pi");
delay(2000);
}
```

This program prints hello pi in raspberry serial terminal.

Step4: install python package pyserial as mentioned in previous examples

Step5: in raspberry pi run sudo python and in command line type following commands

import serial

ser = serial.Serial('/dev/ttyACM0', 9600)

while 1:

ser.readline()

this will print Hello Pi message from arduino

```
pi@raspberrypi: ~/pyserial-2.7
pi@raspberrypi ~/pyserial-2.7 $ sudo python
Python 2.7.3 (default, Mar 18 2014, 05:13:23)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import serial
>>> ser = serial.Serial('/dev/ttyUSB0',9600)
>>> while 1:
        ser.readline()
'Hello Pi\r\n'
```

connections:

	Power supply Raspberry pi	Ethernet	on USB cable to connect arduino and raspberry	
Ardui	no board	-	-/	

3. CONNECTING GPS TO RASPBERRY PI:

Components : Raspberry Pi Can buy from: <u>http://researchdesignlab.com/development-baord/raspberry-pi-40/raspberry-pi-model-b.html</u> GPS Receiver PA6E-CAM with GPS Antenna Can buy from: <u>http://researchdesignlab.com/gps-receiver-pa6e-cam-with-gps-antenna.html</u> USB to TTL converter Can buy from: <u>http://researchdesignlab.com/index.php/modules/usb-to-rs232-converter.html</u> Female jumper wires Can buy from: <u>http://researchdesignlab.com/jumper-wire-female-pack-of-5.html</u>

Step1:

Connect GPS system to USB to TTL and to USB port of an Raspberry Pi. Use following command to check to which USB port it is connected it shows respective USB port

ls /dev/ttyUSB*

Step2: installing required software's. install gpsd software by using following command

sudo apt-get install gpsd gpsd-clients python-gps

Step3: use below command to point out the our GPS device on the USB to TTL adapter

sudo gpsd /dev/ttyUSB0 -F /var/run/gpsd.sock

Step4: type the following command to test the result

cgps -s

it will show a output similar to this on the screen with all GPS information

ß	pi@raspberrypi: ~	Aug. 10. 16.6	N 8.1				Ŀ		x
10	laaaaaaaaaaaaaaa	dddddddddddddddddd	qqqqqqqklq	qqqq	qqqqqqqq	adadada	adadad	adadada	qk 🔺
х	Time:	2015-10-28T07:20:08.	000Z xxP	RN:	Elev:	Azim:	SNR:	Used:	x
х	Latitude:	12.873073 N	XX	72	68	357	25	Y	x
ж	Longitude:	74.851533 E	XX	65	49	225	00	Y	х
х	Altitude:	6.0 m	XX	86	48	067	00	Y	х
х	Speed:	0.1 kph	XX	71	18	023	21	N	x
х	Heading:	44.4 deg (true)	XX	85	16	119	37	N	х
х	Climb:	0.0 m/min	XX	76	03	218	00	N	x
х	Status:	3D FIX (63 secs)	XX						х
х	Longitude E	rr: n/a	XX						x
х	Latitude Er	r: n/a	XX						x
х	Altitude Er	r: +/-4m	XX						x
х	Course Err:	n/a	XX						x
х	Speed Err:	n/a	XX						x
х	Time offset	: 0.629	XX						х
х	Grid Square	: MK72ku	XX						х
me	ddddddddddddd	ddddddddddddddddddd	dddddddjwd	dddd	qqqqqqqq	dddddd	dddddd	idddddd	qj
									=
									-
<u> </u>									

Connections:

