

2014

Programming with PIC
Microcontroller

Introduction of PIC

Getting started with MPLAB IDE

Interfacing

1) LED, LCD, KEYPAD

2) ADC, PWM, RELAYS

3) GSM

4)I2C, RTC

 PIC Development Board

Programming with PIC Microcontroller

www.researchdesignlab.com Page 1

PIC

CONTROLLER

Programming with PIC Microcontroller

www.researchdesignlab.com Page 2

Table of Contents
INTRODUCTION .. 3

EMBEDDED SYSTEMS ... 3

PIC16F877A ... 3

Overview: .. 3

MPLAB IDE: .. 5

GETTING STARTED WITH EMBED C PROGRAMMING:.. 24

Lab 1 . LED Blinking using PIC controller (16F877A) with MPLAB: 24

Lab2.To display a message on LCD using pic controller .. 26

Lab3.Interfacing ADC to display analog to digital conversion values on LCD. 30

Lab 6. Interfacing KEYPAD to display value on LCD when a key is pressed. 39

Lab7. Interfacing 7segment ... 45

Lab 8. Interfacing GSM modem to send and receive the message ... 48

Lab 9. Interfacing RELAY to turn the relays ON and OFF. ... 52

Lab 10. Display a message using I2c Protocol .. 57

Lab 11. Working with RTC and controller ... 65

Programming with PIC Microcontroller

www.researchdesignlab.com Page 3

INTRODUCTION

EMBEDDED SYSTEMS

PIC16F877A

Overview:
The PIC 16F877A PIC microcontroller is one of the most popular general purpose

microcontrollers. It is of 8-bit which means the most available operations are limited to 8-bits.It

is a 40-pin IC.

Programming with PIC Microcontroller

www.researchdesignlab.com Page 4

Ports:

There is one 6-bit ports: A , 3 8-bit ports: B ,C,D and one 3 bit port:E.

PORTA (Pin 2 to 7)and TRISA register :PORTA is a 6-bit wide, bidirectional port. The

corresponding data direction register is TRISA. Setting a TRISA bit (= 1)

will make the corresponding. PORTA pin an input (i.e., put the corresponding output driver in a

High-Impedance mode).Clearing a TRISAbit (= 0) will make the corresponding PORTA pin an

output (i.e., put the contents of the output latch on the selected pin).Reading the PORTA regiter

reads the status of the pins,whereas writing to it will write to the port latch.All write operations

are read-modify write operations.Therefore, a write to a port implies that the port pins are read,

the value is modified and then written to the port data latch.

PORTB(Pin 33 to 40)and TRISB register: PORTB is an 8-bit wide, bidirectional port. The

corresponding data direction register is TRISB. Setting aTRISB bit (= 1)will make the

corresponding PORTB pin an input(i.e., put the corresponding output driver in a High-

Impedance mode). Clearing a TRISB bit (= 0)will make the corresponding PORTB pin an

output (i.e.,put the contents of the output latch on the selected pin).Three pins of PORTB are

multiplexed with the In-Circuit.Debugger and Low-Voltage Programming

function:RB3/PGM,RB6/PGC and RB7/PGD.

PORTC(pin 15 to 18 and pin 24 to 26)and TRISC register:PORTC is an 8-bit wide,

bidirectional port. The corresponding data direction register is TRISC. Setting a TRISC bit (= 1)

will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a

High-Impedance mode). Clearing a TRISC bit (= 0)will make the corresponding PORTC pin an

output (i.e.put the contents of the output latch on the selected pin).PORTC is multiplexed with

several peripheral functions PORTC pins have Schmitt Trigger input buffers. When the I2C

module is enabled, the PORTC<4:3>pins can be configured with normal I2C levels, or with

SMBus levels, by using the CKE bit (SSPSTAT<6>).When enabling peripheral functions, care

should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS

Programming with PIC Microcontroller

www.researchdesignlab.com Page 5

bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input.

Since the TRIS bit override is in effect while the peripheral is enabled, read-modify write

instructions (BSF, BCF, XORWF) with TRISC as the destination, should be avoided. The user

should refer to corresponding peripheral section for the correct TRIS bit settings.

PORTD(Pin 19to22 and pin 27to30)and TRISD register: PORTD is an 8-bit port

with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

PORTD can be configured as an 8-bit wide microprocessor port (Parallel Slave Port) by setting

control bit, PSPMODE (TRISE<4>). In this mode, the input buffers are TTL.

PORTE(Pin8 to 10)and TRISE register: PORTE has three pins (RE0/RD/AN5,

RE1/WR/AN6 and RE2/CS/AN7) which are individually configurable as inputs or outputs.

These pins have Schmitt Trigger input buffers.The PORTE pins become the I/O control inputs

for the microprocessor port when bit PSPMODE (TRISE<4>) is set. In this mode, the user must

make certain that the TRISE<2:0> bits are set and that the pins are configured as digital inputs.

Also, ensure that ADCON1 is configured for digital I/O. In this mode, the input buffers are TTL.

PORTE pins are multiplexed with analog inputs. When selected for analog input, these pins will

read as ‘0’s.

MPLAB IDE:

MPLAB IDE is a free integrated toolset for the development of embedded application on
microchip IC and dsPIC microcontroller.

Install MPLAB by following the instructions sets provided in your software.

Creating a new project:

1) Open MPLAB

2) Create a folder in any drive.

3) Select project->project wizard

Programming with PIC Microcontroller

www.researchdesignlab.com Page 6

4) Click on next

Programming with PIC Microcontroller

www.researchdesignlab.com Page 7

5) Select PIC16F7877A then click on next.

Programming with PIC Microcontroller

www.researchdesignlab.com Page 8

6) Select HI-TECH Universal Tool Suite and click next

7) Click on browse and select the folder you saved on the drive and write a filename ex: lcd12.

Programming with PIC Microcontroller

www.researchdesignlab.com Page 9

8) Click on save

Programming with PIC Microcontroller

www.researchdesignlab.com Page 10

9)Click on next->next->next->finish

Programming with PIC Microcontroller

www.researchdesignlab.com Page 11

10) You will get the following window.

11) Click on file->new->type a program

Programming with PIC Microcontroller

www.researchdesignlab.com Page 12

12) Click on save->save it in the same folder with .c extension and click on save.

Programming with PIC Microcontroller

www.researchdesignlab.com Page 13

13) Right click on source file ->add files->select your .c file->click on open.

Programming with PIC Microcontroller

www.researchdesignlab.com Page 14

Programming with PIC Microcontroller

www.researchdesignlab.com Page 15

Programming with PIC Microcontroller

www.researchdesignlab.com Page 16

14)click on programmer->select programmer->9PICkit 2

Programming with PIC Microcontroller

www.researchdesignlab.com Page 17

15) Click on configure ->configuration bits->unclick the configuration bits set in code->click ok-

select low voltage programming->then click the configuration set in code

Programming with PIC Microcontroller

www.researchdesignlab.com Page 18

Programming with PIC Microcontroller

www.researchdesignlab.com Page 19

Programming with PIC Microcontroller

www.researchdesignlab.com Page 20

Programming with PIC Microcontroller

www.researchdesignlab.com Page 21

16)Click on programmer->connect

17) Click on compile

Programming with PIC Microcontroller

www.researchdesignlab.com Page 22

Programming with PIC Microcontroller

www.researchdesignlab.com Page 23

Programming with PIC Microcontroller

www.researchdesignlab.com Page 24

GETTING STARTED WITH EMBED C PROGRAMMING:

Lab 1 . LED Blinking using PIC controller (16F877A) with MPLAB:

Programming with PIC Microcontroller

www.researchdesignlab.com Page 25

I/O Connections :
PORT B4LED1

PORTB5LED2

PORTB6Switch1

PORTB7Switch2

#include <htc.h>
#define _XTAL_FREQ 20000000 //crystal frequency of 20MHZ
#define Input1 RB7 //set port RB7 as input port
#define Input2 RB1 //set port RB1 as input port
#define Output1 RB4 //set port RB4 as output port
#define Output2 RB5 //set port RB5 as output port

void main()
{

 TRISB=0X82; //use portB register as input as well as output port
 while(1) //infinite loop
 {
 if(Input1==0) //if switch1 is pressed ie connect port RB7 to sw1
 {

 Output1=1; //blink both the LED’S
 Output2=1;

 }
 else if(Input2==0) //If switch2 is pressed ie connect port RB1 to sw2

{

Output1=0; //both the LED’S are turned off
Output2=0;

 }
 }
}

Programming with PIC Microcontroller

www.researchdesignlab.com Page 26

Lab2.To display a message on LCD using pic controller

Programming with PIC Microcontroller

www.researchdesignlab.com Page 27

I/O connection:
PORT B0 tO B7DO to D7 of LCD

ENABLED7

R/WGROUND

R/SD6

#include <htc.h>

#include<string.h>

#define _XTAL_FREQ 20000000 //crystal frequency of 20MHZ

#define EN RD7 //connect enable pin of LCD to port D7

#define RS RD6 //connect Register select pin of LCD

 to port D6

void LCD_Delay() //delay routine

{

 __delay_ms(1);

}

void LCD_Cmd(unsigned char cmd) //this function is to write command to

 the LCD

{

PORTB=cmd;

 RS=0; //Set RS pin to low in order to send a

command to the LCD

 EN=1; //set EN pin to high in order to send

high pulse

 LCD_Delay(); //give a small delay

 EN=0; //set EN pin to low in order to make

pulse low

 LCD_Delay(); //give a small delay

Programming with PIC Microcontroller

www.researchdesignlab.com Page 28

}

void LCD_Init() //Initializing LCD

{

unsigned char cmd[5]={0X38,0X06,0X0F,0X01,0X80},Count;

//0x38 represents 5x7 matrix ,0x06 represent entry mode,0x0f represent display on cursor

blinking,0x01 represents clearing the LCD,0x80 represents 1st row

 for(Count=0;Count<5;Count++)

 LCD_Cmd(cmd[Count]);

}

void LCD_SendDataByte(unsigned char data) //this function is to write a byte on LCD

{

 PORTB=data;

 RS=1; //make RS pin high inorder to send a

data

EN=1; //set enable pin to high in order to

sendhigh to low pulse

 LCD_Delay(); //provide a small delay

 EN=0;

 LCD_Delay();

}

void LCD_Display(char *addr) //this function is to display a string on

LCD

{

 while(*addr)

 {

 LCD_SendDataByte(*addr);

 addr++;

 }

Programming with PIC Microcontroller

www.researchdesignlab.com Page 29

}

void main()

{

 TRISB=0x00; //make the registerB as ouput

 TRISD=0x00; //make the registerD as ouput

 LCD_Init(); //Initialize the LCD

 __delay_ms(1000);

 while(1) //infinite loop

 {

 LCD_Cmd(0X01); //clearing the LCD

 LCD_Cmd(0X84); //1st row 4th position

 LCD_Display("123"); //display 123 on LCD

 LCD_Cmd(0xc0); //2nd row

 LCD_Display(" RDL"); //display RDL on LCD

 __delay_ms(1000); //delay by 1s

 LCD_Cmd(0x01); //clear the LCD

 LCD_Cmd(0x80); //1st row

 LCD_Display(" LCD"); //display LCD

 LCD_Cmd(0xc0); //2nd row

 LCD_Display(" Display"); //display on LCD

 __delay_ms(1000); //delay by 1s

 }

Programming with PIC Microcontroller

www.researchdesignlab.com Page 30

}

Lab3.Interfacing ADC to display analog to digital conversion values on LCD.

I/O connection:

PORT B0 to B7DO to D7 of LCD

ENABLED7

R/WGROUND

R/SD6

A0PORTC0

#include <htc.h>
#include<string.h>
#define _XTAL_FREQ 20000000 //crystal frequency of 20MHZ
#define EN RD7 //connect enable pin of LCD to port D7
#define RS RD6 //connect Register select pin of LCD to port
 D6
/*LCD code */

void LCD_Delay() //delay routine
{
 __delay_ms(1);
}

void LCD_Cmd(unsigned char cmd) //this function is to write command to the LCD
{

Programming with PIC Microcontroller

www.researchdesignlab.com Page 31

 PORTB=cmd;
 RS=0; //Set RS pin to low in order to send a

command to the LCD
 EN=1; //set EN pin to high in order to send

high pulse
 LCD_Delay(); //give a small delay

 EN=0; //set EN pin to low in order to make
pulse low

 LCD_Delay(); //give a small delay
}

void LCD_Init() //Initializing LCD
{

 unsigned char cmd[5]={0X38,0X06,0X0F,0X01,0X80},Count;
//0x38 represents 5x7 matrix ,0x06 represent entry mode,0x0f represent display on cursor

blinking,0x01 represents clearing the LCD,0x80 represents 1st row
 for(Count=0;Count<5;Count++)
 LCD_Cmd(cmd[Count]);
}

void LCD_SendDataByte(unsigned char data) //this function is to write a byte on LCD
{
 PORTB=data;

 RS=1; //make RS pin high inorder to send a data
 EN=1; //set enable pin to high in order to send

high to low pulse
 LCD_Delay(); //provide a small delay
 EN=0;
 LCD_Delay();
}
void LCD_Display(char *addr) //this function is to display a string on LCD
{
 while(*addr)
 {
 LCD_SendDataByte(*addr);
 addr++;
 }
}

void ADC_Init()
{
 ADCON0 = 0x41; //set A/D control register0 to 0x41
 ADCON1 = 0xC0; //set A/D control register1 0xc0

Programming with PIC Microcontroller

www.researchdesignlab.com Page 32

}

unsigned int ADC_Read(unsigned char channel)
{
 if(channel > 7)
 return 0;

 ADCON0 &= 0xC5;
 ADCON0 |= channel<<3;
 __delay_ms(2);
 GO_nDONE = 1;
 while(GO_nDONE);

 return ((ADRESH<<8)+ADRESL); //left shift the higherorder bits and add the lower order
bits

}

void display(unsigned int number) //this function is for (0-1024)A/D conversion
{

unsigned char digit1,digit2,digit3,digit4,digit[4];
unsigned char x;
unsigned char temp;

 digit1 = number / 1000u ; // extract thousands digit

digit2 = (number / 100u) % 10u; // extract hundreds digit

 digit3 = (number / 10u) % 10u; // extract tens digit

 digit4 = number % 10u; // extract ones digit
 digit[3]=digit4;
 digit[2]=digit3;
 digit[1]=digit2;
 digit[0]=digit1;

for(x=0;x<4;x++) //loop for upto 4 digits
{

temp=digit[x]|0x30; //convert to ACII

LCD_SendDataByte(temp); //display the value on LCD
}

}

void main()
{

Programming with PIC Microcontroller

www.researchdesignlab.com Page 33

 unsigned int value;
 unsigned int a;
 TRISB = 0x00; //Set registerB as output
 TRISC = 0x00; //Set registerC as output
 TRISD=0x00; //set registerD as output
 LCD_Init(); //initialize the LCD
 __delay_ms(1000); //provide delay for 1s
 ADC_Init(); //ADC initialisation

 do
 {

 a = ADC_Read(0); //read port (A0)
 __delay_ms(2000); //provide delay for 2s
 LCD_Cmd(0x80); //1st row
 LCD_ display(a); //display the value on LCD
 __delay_ms(1000); //provide delay
 } while(1);

}

Programming with PIC Microcontroller

www.researchdesignlab.com Page 34

Lab 4.Interfacing UART toTransmit and Receive the message

I/O connection:

TX and RXUART RX and TX

Ground of Ic UART ground

#include<htc.h>

#define _XTAL_FREQ 20000000 //crystal frequency of 20MHZ

#include "uart.h" //header file

#include "string.h" //header file

char val;

void main()

{

 __delay_ms(1000); //provide delay for 1s

 UART_Init(9600); //calling initialization function with 9600 baud

rate

 __delay_ms(1000); //provide delay for 1s

UART_Write_Text("RDL"); //Display RDL on hyper terminal

 do

 {

 if(UART_Data_Ready()) //check whether it is ready to receive a data

{

 recieve = UART_Read(); //read a data and store in variable

 UART_Write(recieve); //display on terminal

 UART_Write(10); //enter

 UART_Write(13); //carriage return

Programming with PIC Microcontroller

www.researchdesignlab.com Page 35

 __delay_ms(1000); //provide delay of 1s

}

 }while(1);

}

char UART_Init(const long int baudrate)

{

 unsigned int x;

 x = (_XTAL_FREQ - baudrate*64)/(baudrate*64);

 if(x>255)

 {

 x = (_XTAL_FREQ - baudrate*16)/(baudrate*16);

 BRGH = 1; //High Baud Rate Select bit set to high

 }

 if(x<256)

 {

 SPBRG = x; //Writing SPBRG register

 SYNC = 0; //Selecting Asynchronous Mode

 SPEN = 1; //enables serial port

 TRISC7 = 1;

 TRISC6 = 1;

 CREN = 1; //enables continuous reception

 TXEN = 1; //enables continuous transmission

 return 1;

 }

 return 0;

}

char UART_TX_Empty()

{

 return TRMT; //Returns Transmit Shift Status bit

Programming with PIC Microcontroller

www.researchdesignlab.com Page 36

}

char UART_Data_Ready()

{

 return RCIF; //Flag bit

}

char UART_Read() //this function is used to read a byte

{

 while(!RCIF); //Waits for Reception to complete

 return RCREG; //Returns the 8 bit data

}

void UART_Read_Text(char *Output, unsigned int length)//this function is used to read a text

{

 int i;

 for(int i=0;i<length;i++)

 Output[i] = UART_Read();

}

void UART_Write(char data) //this function is used to write a byte

{

 while(!TRMT);

 TXREG = data; //transmit register

}

void UART_Write_Text(char *text) //this function is used to write a string

{

 int i;

 for(i=0;text[i]!='\0';i++)

 UART_Write(text[i]);

}

Programming with PIC Microcontroller

www.researchdesignlab.com Page 37

Lab 5.Interfacing PWM to vary the brightness of LED

I/O connection:

PORT C1LED1.

PORTC2LED2

#include<htc.h>

#define XTAL 20000 //20Mhz=20000Khz

#define PWM_Freq 1 //1Khz PWM frequency

#define TMR2_PRE 16 //Timer2 Prescale

#define PR2_Val ((char)((XTAL/(4*TMR2_PRE*PWM_Freq))-1))

 //Calculation for Period register PR2 (2Khz)

#define Duty_Cyc PR2_Val*2

 unsigned int i;

void PWM_init(void); // This function is to initialize the PWM

void PWM_change(unsigned int); //This function is to change theDuty cycle

 routine

void DelayMs(unsigned int); //this function is to provide a delay

void main(void)

{

 PWM_init();

 while(1)

 {

 i=0;

 PWM_change(i);

 DelayMs(10);

 while(i<PR2_Val)

 {

 i=i+1;

 PWM_change(i);

Programming with PIC Microcontroller

www.researchdesignlab.com Page 38

 DelayMs(200);

 }

 }

}

void PWM_init(void)

{

 TRISC2=0; //PWM channel 1 and 2 configured as output

 TRISC1=0;

 PORTC = 0x00;

 CCP1CON=0x0c; //CCP1 and CCP2 are configured for PWM

 CCP2CON=0x0c;

 PR2=PR2_Val; //Move the PR2 value

 T2CON=0x03; //Timer2 Prescale is 16

 TMR2=0x00;

 TMR2ON=1; //Turn ON timer2

}

void PWM_change(unsigned int DTY) //Duty cycle change routine

{

 CCPR1L=DTY; //Value is between 0 to 255

 CCPR2L=DTY;

}

void DelayMs(unsigned int Ms) //Delay Routine

{

 int delay_cnst;

 while(Ms>0)

Programming with PIC Microcontroller

www.researchdesignlab.com Page 39

 {

 Ms--;

 for(delay_cnst = 0;delay_cnst <220;delay_cnst++); //delay constant for 1Ms @20Mhz

 }

}

Lab 6. Interfacing KEYPAD to display value on LCD when a key is pressed.

I/O connection:

PORT D0 tO D7DO to D7 of LCD

ENABLEC0

R/WGROUND

R/SC1

R1,R2,R3,R4PORT B0 to B3

C1,C2,C3,C4PORT4 to B7

#include <htc.h>

#include <stdio.h> // Define I/O functions

#define XTAL 20000000

#define BAUD_RATE 9.6 //9600 Baudrate

Programming with PIC Microcontroller

www.researchdesignlab.com Page 40

#define BAUD_VAL (char)(XTAL/ (16 * BAUD_RATE)) - 1;

//Calculation For9600 Baudrate @20Mhz

 #define EN RC0

#define RS RC1

void ScanCol(void); //Column Scan Function

void ScanRow(void); //Row Scan Function

void DelayMs(unsigned int);

void LCD_Cmd(unsigned char);

void LCD_Init(void);

void LCD_Display(char *addr);

void LCD_SendDataByte(unsigned char);

unsigned char KeyArray[4][4]= { '1','2','3','4',

 '5','6','7','8',

 '9','A','B','C',

 'D','E','F','0'};

//Keypad value Initialization Function

unsigned char Count[4][4]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

int Col=0,Row=0,count=0,i,j;

void main()

{

 TRISD=0x00; //set registerD as output

 TRISC=0x00; //set register C as output

 LCD_Init(); //initialize LCD

 DelayMs(1000);

Programming with PIC Microcontroller

www.researchdesignlab.com Page 41

 nRBPU=0; //Enable PORTB Pullup values

 while(1)

 {

 TRISB=0X0f; // Enable the 4 LSB as I/P & 4 MSB as

 O/P

 PORTB=0X00;

 while(PORTB==0x0f); // Get the ROW value

 ScanRow();

 TRISB=0Xf0; // Enable the 4 LSB as O/P & 4 MSB as

 I/P

 PORTB=0X00;

 while(PORTB==0xf0); // Get the Column value

 ScanCol();

 DelayMs(1000); //provide a delay of 1s

 Count[Row][Col]++; // Count the Pressed key

 LCD_Cmd(0X01); //clear the LCD

 LCD_Cmd(0X80); //1st row of the LCD

 LCD_SendDataByte(KeyArray[Row][Col]); //send keypad value and display on LCD

 DelayMs(1000); //provide delay of 1s

 }

}

void ScanRow() // Row Scan Function

{

 switch(PORTB)

 {

Programming with PIC Microcontroller

www.researchdesignlab.com Page 42

 case 0x07:

 Row=3; // 4th Row

 break;

 case 0x0b:

 Row=2; // 3rd Row

 break;

 case 0x0d:

 Row=1; // 2nd Row

 break;

 case 0x0e:

 Row=0; // 1st Row

 break;

 }

}

void ScanCol() // Column Scan Function

{

 switch(PORTB)

 {

 case 0x70:

 Col=3; // 4th Column

 break;

 case 0xb0:

 Col=2; // 3rd Column

 break;

 case 0xd0:

 Col=1; // 2nd Column

 break;

 case 0xe0:

Programming with PIC Microcontroller

www.researchdesignlab.com Page 43

 Col=0; // 1st Column

 break;

 }

}

/*LCD CODE*/

void LCD_Delay() //delay routine

{

 __delay_ms(1);

}

void LCD_Cmd(unsigned char cmd) //this function is to write command to the LCD

{

 PORTB=cmd;

 RS=0; //Set RS pin to low in order to send a

 command to the LCD

 EN=1; //set EN pin to high in order to send high pulse

 LCD_Delay(); //give a small delay

 EN=0; //set EN pin to low in order to make pulse low

 LCD_Delay(); //give a small delay

}

void LCD_Init() //Initializing LCD

{

 unsigned char cmd[5]={0X38,0X06,0X0F,0X01,0X80},Count;

Programming with PIC Microcontroller

www.researchdesignlab.com Page 44

//0x38 represents 5x7 matrix ,0x06 represent entry mode,0x0f represent display on cursor

blinking,0x01 represents clearing the LCD,0x80 represents 1st row

 for(Count=0;Count<5;Count++)

 LCD_Cmd(cmd[Count]);

}

void LCD_SendDataByte(unsigned char data) //this function is to write a byte on LCD

{

 PORTB=data;

 RS=1; //make RS pin high inorder to send a data

 EN=1; //set enable pin to high in order to send high

 to low pulse

 LCD_Delay(); //provide a small delay

 EN=0;

 LCD_Delay();

}

void LCD_Display(char *addr) //this function is to display a string on LCD

{

 while(*addr)

 {

 LCD_SendDataByte(*addr);

 addr++;

 }

}

Programming with PIC Microcontroller

www.researchdesignlab.com Page 45

Lab7. Interfacing 7segment
I/O connection:
 A,B,C,D,E,F,G,DPB0 to B7

 DIG1,DIG2,DIG3,DIG4 A0 to A3

#include<htc.h>
 #define CNTRL_PORT PORTA
#define DATA_PORT PORTB

void hex2dec(unsigned char); //function to convert hex value to decimal

void send_seg(unsigned char,unsigned char,unsigned char,unsigned char); //Function to display
count on 7seg

void DelayMs(unsigned int); //function to provide delay
unsigned char x;
unsigned char thou=0,hun=0,ten=0,single=0;
unsignedcharCA[10] = {0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90};
unsignedchar CC[10] = {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};
unsigned char CA_CNTRL[4] = {0x07,0x0b,0x0d,0x0e};
unsigned char CC_CNTRL[4] = {0x08,0x04,0x02,0x01};
unsigned char n=1;
void main()
{
 unsigned char number;
 nRBPU =0;
 TRISB=0x00; //PORTB configured as O/P
 ADCON1=0x07; //Configure PORTA & PORTE as Digital
 port

Programming with PIC Microcontroller

www.researchdesignlab.com Page 46

 TRISA=0x00; //PORTA Configured as O/P
 while(1)
 {
 if(x == 200)
 {
 x=0;
 single++; //Increment up to 9 in unit place
 if(single>9)
 {
 single=0;
 ten++; //Increment up to 9 in Tenth place
 if(ten>9)
 {
 ten=0;
 hun++; //Increment up to 9 in Hundredth place
 if(hun>9)
 {
 hun=0;
 thou++; //Increment up to 9 in Thousandth place
 if(thou>9)
 thou=0;
 }
 }
 }
 }
 x++;
 send_seg(thou,hun,ten,single);
 }
}
void send_seg(unsigned char thou,unsigned char hun,unsigned char ten,unsigned char single)
{
 if(n==1)
 {
 CNTRL_PORT=CA_CNTRL[0]; //Eanble Unit place 7-Segment
 DATA_PORT=CA[single]; //Display Unit Place Number
 n=2;
 DelayMs(5);
 }

 else if(n==2)
 {
 CNTRL_PORT=CA_CNTRL[1]; //Eanble Tenth place 7-Segment
 DATA_PORT=CA[ten]; //Display Tenth Place Number
 n=3;
 DelayMs(5);

Programming with PIC Microcontroller

www.researchdesignlab.com Page 47

 }
 else if(n==3)
 {
 CNTRL_PORT=CA_CNTRL[2]; //Enable Hundredth place 7-Segment
 DATA_PORT=CA[hun]; //Display Hundredth Place Number
 n=4;
 DelayMs(5);
 }
 else if(n==4)
 {
 CNTRL_PORT=CA_CNTRL[3]; //Eanble Thousandth place 7-Segment
 DATA_PORT=CA[thou]; //Display Thousandth Place Number
 n=1;
 DelayMs(5);
 }
}
void DelayMs(unsigned int Ms)
{
 int delay_cnst;
 while(Ms>0)
 {
 Ms--;
 for(delay_cnst = 0;delay_cnst <220;delay_cnst++);
 }
}

Programming with PIC Microcontroller

www.researchdesignlab.com Page 48

Lab 8. Interfacing GSM modem to send and receive the message

I/Oconnection:
Vin of GSM12v

Ground of GSMGround

D0,D1 of GSMTX,RX

#define <htc.h>

#define _XTAL_FREQ 20000000 //crystal frequency of 20MHZ

#include "uart.h" //header file

#include "string.h" //header file

char UART_Init(const long int baudrate)

{

 unsigned int x;

 x = (_XTAL_FREQ - baudrate*64)/(baudrate*64);

 if(x>255)

 {

 x = (_XTAL_FREQ - baudrate*16)/(baudrate*16);

Programming with PIC Microcontroller

www.researchdesignlab.com Page 49

 BRGH = 1; //High Baud Rate Select bit set to high

 }

 if(x<256)

 {

 SPBRG = x; //Writing SPBRG register

 SYNC = 0; //Selecting Asynchronous Mode

 SPEN = 1; //enables serial port

 TRISC7 = 1;

 TRISC6 = 1;

 CREN = 1; //enables continuous reception

 TXEN = 1; //enables continuous transmission

 return 1;

 }

 return 0;

}

char UART_TX_Empty()

{

 return TRMT; //Returns Transmit Shift Status bit

}

char UART_Data_Ready()

{

 return RCIF; //Flag bit

}

char UART_Read() //this function is used to read a byte

{

 while(!RCIF); //Waits for Reception to complete

 return RCREG; //Returns the 8 bit data

Programming with PIC Microcontroller

www.researchdesignlab.com Page 50

}

void UART_Read_Text(char *Output, unsigned int length)

//this function is used to read a text

{

 int i;

 for(int i=0;i<length;i++)

 Output[i] = UART_Read();

}

void UART_Write(char data) //this function is used to write a byte

{

 while(!TRMT);

 TXREG = data; //transmit register

}

void UART_Write_Text(char *text) //this function is used to write a string

{

 int i;

 for(i=0;text[i]!='\0';i++)

 UART_Write(text[i]);

}

void main()

{

UART_Init(9600); //initialize the UART function

__delay_ms(1000); //provide the delay of 1s

while(1) //infinite loop

{

__delay_ms(1000); //provide a delay of 1s

UART_Write_Text("AT"); //attention command

Programming with PIC Microcontroller

www.researchdesignlab.com Page 51

UART_Write(13); //enter

UART_Write(10); //carriage return

__delay_ms(1000); //provide delay of 1s

UART_Write_Text("AT+CMGF=1"); //initialize the modem

UART_Write(13); //enter

UART_Write(10); //carriage return

__delay_ms(1000); //provide delay of 1s

UART_Write_Text("AT+CMGS=\"1234567890\""); //send a message

UART_Write(13); //enter

UART_Write(10); //carriage return

__delay_ms(1000); //provide delay of 1s

UART_Write_Text("GSM"); //display on hyper terminal

UART_Write(13); //enter

UART_Write(10); //carriage return

__delay_ms(1000); //provide delay of 1s

UART_Write(26); //Ctr +Z

}

}

Programming with PIC Microcontroller

www.researchdesignlab.com Page 52

Lab 9. Interfacing RELAY to turn the relays ON and OFF.

I/O connection:

B0,B1,B2,B3 to relay shield.

#define _XTAL_FREQ 20000000 //crystal frequency of 20MHZ

#include "uart.h" //header file

#include "string.h" //header file

#define relay1 RB1

#define relay2 RB2

#define relay3 RB3

#define relay4 RB4

char UART_Init(const long int baudrate)

{

 unsigned int x;

 x = (_XTAL_FREQ - baudrate*64)/(baudrate*64);

Programming with PIC Microcontroller

www.researchdesignlab.com Page 53

 if(x>255)

 {

 x = (_XTAL_FREQ - baudrate*16)/(baudrate*16);

 BRGH = 1; //High Baud Rate Select bit set to high

 }

 if(x<256)

 {

 SPBRG = x; //Writing SPBRG register

 SYNC = 0; //Selecting Asynchronous Mode

 SPEN = 1; //enables serial port

 TRISC7 = 1;

 TRISC6 = 1;

 CREN = 1; //enables continuous reception

 TXEN = 1; //enables continuous transmission

 return 1;

 }

 return 0;

}

char UART_TX_Empty()

{

 return TRMT; //Returns Transmit Shift Status bit

}

char UART_Data_Ready()

{

 return RCIF; //Flag bit

}

char UART_Read() //this function is used to read a byte

Programming with PIC Microcontroller

www.researchdesignlab.com Page 54

{

 while(!RCIF); //Waits for Reception to complete

 return RCREG; //Returns the 8 bit data

}

void UART_Read_Text(char *Output, unsigned int length)//this function is used to read a text

{

 int i;

 for(int i=0;i<length;i++)

 Output[i] = UART_Read();

}

void UART_Write(char data) //this function is used to write a byte

{

 while(!TRMT);

 TXREG = data; //transmit register

}

void UART_Write_Text(char *text) //this function is used to write a string

{

 int i;

 for(i=0;text[i]!='\0';i++)

 UART_Write(text[i]);

}

void main()

{

unsigned char ReceivChar;

TRISB=0X00; //make register as the output

PORTB=0X00; //make the PORTB as the output port

Programming with PIC Microcontroller

www.researchdesignlab.com Page 55

UART_Init(9600); //inititalise the UART

DelayMs(1000); //provide delay of 1s

while(1)

{

if(UART_Data_Ready()) //check if the data is ready

 {

 ReceivChar = UART_Read(); //store the data in a variable

 UART_Write(ReceivChar); //display on hyperterminal

 __delay_ms(1000); //provide delay of 1s

 if(ReceivChar=='1') //check if the received char is 1if 1

 {

 ReceivChar = UART_Read(); //store the data in a variable

 UART_Write(ReceivChar); //display on hyperterminal

 if(ReceivChar=='N') //if received character is N

 relay1=1; //turn ON the 1st relay

 else if(ReceivChar=='F') //if received character is F

 relay1=0; //turn OFF the 1st relay

 }

 else if(ReceivChar=='2') //check if the received char is 2if 2

 {

ReceivChar = UART_Read(); //store the data in a variable

UART_Write(ReceivChar); //display on hyperterminal

 if(ReceivChar=='N') //if received character is N

 relay2=1; //turn ON the 2nd relay

Programming with PIC Microcontroller

www.researchdesignlab.com Page 56

 else if(ReceivChar=='F') //if received character is F

 relay2=0; //turn OFF the 2nd relay

 }

 else if(ReceivChar=='3') //check if the received char is 3if 3

 {

 ReceivChar = UART_Read(); //store the data in a variable

 UART_Write(ReceivChar); //display on hyperterminal

 if(ReceivChar=='N') //if received character is N

 relay3=1; //turn ON the 3rd relay

 else if(ReceivChar=='F') //if received character is N

 relay3=0; //turn OFF the 3rd relay

 }

else if(ReceivChar=='4') //check if the received char is 4if 4

 {

 ReceivChar = UART_Read(); //store the data in a variable

 UART_Write(ReceivChar); //display on hyperterminal

 if(ReceivChar=='N') //if received character is N

 relay4=1; //turn ON the 4th relay

 else if(ReceivChar=='F') //if received character is N

 relay4=0; //turn OFF the 4th relay

 }

Programming with PIC Microcontroller

www.researchdesignlab.com Page 57

Lab 10. Display a message using I2c Protocol

I/O connection:

SCL of EEPROMC3

SDA of EEPROMC4

#include<htc.h>

#include"string.h"

#include<stdio.h>

#define _XTAL_FREQ 20000000

#define I2C_FREQ 100 // 100khz at 4Mhz

#define FOSC 20000 // 20Mhz==>20000Khz

void WaitMSSP(void); //function to wait for a operation to complete

void i2c_init(void); //Initialize the UART

void I2C_Start(void); //function to send a start bit

Programming with PIC Microcontroller

www.researchdesignlab.com Page 58

void I2C_Stop(void); //function to send a stop bit

char I2C_Read_Data(void); //function to read a data

char I2C_Write_Data(unsigned char); //function to write the data

void I2C_Reset(void); //function to reset the bit

void DelayMs(unsigned int); //function to provide a delay

char UART_Init(const long int); // function to initialize UART

void UART_Write_Text(char *); //function to write the string

void UART_Write(char); //function to write the byte

char UART_Data_Ready(void); //function to check if data ready

char UART_Read(void); //function to read the data

void main()

{

char a;

UART_Init(9600); //initialize the UART

 DelayMs(1000); //Provide a delay of 1s

i2c_init(); //initialize the I2C

 DelayMs(1000); //Provide a delay of 1s

while(1)

Programming with PIC Microcontroller

www.researchdesignlab.com Page 59

{

I2C_Start(); //start bit is set in this function

DelayMs(100); //Provide a delay

I2C_Write_Data(0xa0); //write the data on to the location 0xa0(device address)

DelayMs(100); //Provide a delay

I2C_Write_Data(0x20); //write the data on to location 0x20

DelayMs(100); //Provide a delay

I2C_Write_Data('a'); //send character ‘a’

DelayMs(100); //Provide a delay

I2C_Stop(); //stop bit is set in this function

DelayMs(100); //Provide a delay

I2C_Start(); //start bit is set in this function

DelayMs(100); //Provide a delay

I2C_Write_Data(0xa0); //write the data on to the location 0xa0(device address)

DelayMs(100); //Provide a delay

I2C_Write_Data(0x20); //write the data on to location 0x20

DelayMs(100); //Provide a delay

I2C_Reset(); //this function is used to reset

DelayMs(100); //Provide a delay

I2C_Write_Data(0xa1); //write the data on to the location 0xa0(device address)

DelayMs(100); //Provide a delay

a=I2C_Read_Data(); //this function reads the data stored in EEPROM

UART_Write(a); //display the character on hyper terminal

DelayMs(100); //Provide a delay

I2C_Stop(); //stop bit is set in this function

DelayMs(100); //Provide a delay

}

}

char I2C_Write_Data(unsigned char data)

Programming with PIC Microcontroller

www.researchdesignlab.com Page 60

//This function is used to write the data onto EEPROM

{

 //WaitMSSP(); // wait for the operation to be finished

 SSPBUF=data; //Send Slave address write command

 WaitMSSP(); //wait for operation to complete

}

void I2C_Start() //this function is used to set start bit

{

 SEN=1; //start bit is set

 WaitMSSP(); //wait for operation to complete

}

void I2C_Stop() //this function is used to set start bit

{

 PEN=1; //stop bit is set

WaitMSSP(); //wait for operation to complete

}

void I2C_Reset() //this function is used to reset start bit

{

 RSEN=1; // Send re-start bit

Programming with PIC Microcontroller

www.researchdesignlab.com Page 61

 WaitMSSP(); //wait for operation to complete

}

char I2C_Read_Data() //this function is used to read data from EEPROM

{

 RCEN=1; // Enable receive

 WaitMSSP(); //wait for operation to complete

 ACKDT=1; // Acknowledge data 1: NACK, 0: ACK

 ACKEN=1; // Enable ACK to send

 WaitMSSP(); //wait for operation to complete

 return SSPBUF; // Send the received data to PC

 DelayMs(30);

}

void WaitMSSP() // function for wait for operation to complete

{

 while(!SSPIF); // while SSPIF=0 stay here else exit the loop

Programming with PIC Microcontroller

www.researchdesignlab.com Page 62

 SSPIF=0; // operation completed clear the flag

}

void i2c_init() //function to initialize I2C

{

 TRISC3=1; // Set up I2C lines by setting as input

 TRISC4=1;

 SSPCON=0x28; // SSP port, Master mode, clock = FOSC / (4 * (SSPADD+1))

 SSPADD=(FOSC / (4 * I2C_FREQ)) - 1; //clock 100khz

 SSPSTAT=80; // Slew rate control disabled

}

void DelayMs(unsigned int Ms) //function to provide a delay

{

 int delay_cnst;

 while(Ms>0)

Programming with PIC Microcontroller

www.researchdesignlab.com Page 63

 {

 Ms--;

 for(delay_cnst = 0;delay_cnst <220;delay_cnst++);

 }

}

char UART_Init(const long int baudrate)

{

 unsigned int x;

 x = (_XTAL_FREQ - baudrate*64)/(baudrate*64);

 if(x>255)

 {

 x = (_XTAL_FREQ - baudrate*16)/(baudrate*16);

 BRGH = 1; //High Baud Rate Select bit set to high

 }

 if(x<256)

 {

 SPBRG = x; //Writing SPBRG register

 SYNC = 0; //Selecting Asynchronous Mode

 SPEN = 1; //enables serial port

 TRISC7 = 1;

 TRISC6 = 1;

 CREN = 1; //enables continuous reception

 TXEN = 1; //enables continuous transmission

Programming with PIC Microcontroller

www.researchdesignlab.com Page 64

 return 1;

 }

 return 0;

}

char UART_TX_Empty()

{

 return TRMT; //Returns Transmit Shift Status bit

}

char UART_Data_Ready()

{

 return RCIF; //Flag bit

}

char UART_Read() //this function is used to read a byte

{

 while(!RCIF); //Waits for Reception to complete

 return RCREG; //Returns the 8 bit data

}

void UART_Read_Text(char *Output, unsigned int length)//this function is used to read a text

{

 int i;

 for(int i=0;i<length;i++)

 Output[i] = UART_Read();

}

void UART_Write(char data) //this function is used to write a byte

{

 while(!TRMT);

Programming with PIC Microcontroller

www.researchdesignlab.com Page 65

 TXREG = data; //transmit register

}

void UART_Write_Text(char *text) //this function is used to write a string

{

 int i;

 for(i=0;text[i]!='\0';i++)

 UART_Write(text[i]);

}

Lab 11. Working with RTC and controller

Pinconnection:

SCL of RTCC3

SDA of RTCC4

Programming with PIC Microcontroller

www.researchdesignlab.com Page 66

#include<htc.h>

#define _XTAL_FREQ 20000000

#include "string.h"

#define LC01CTRLIN 0xd0

#define LC01CTRLOUT 0xd1

#define I2C_FREG 100

#define FOSC 10000

unsigned char sec,min,hour,day,date,month,year;

unsigned char data[7]={0x45,0x59,0x71,0x01,0x13,0x10,0x13};

int i;

void DS1307Write(unsigned char,unsigned char);

void WaitMSSP();

unsigned char DS1307Read(unsigned char);

void i2c_init(void);

char UART_Init(const long int);

Programming with PIC Microcontroller

www.researchdesignlab.com Page 67

void ds1307_init(void);

void DelayMs(unsigned int);

void main()

{

 int count=0;

 DelayMs(20); //provide a delay

 ds1307_init(); //initialize ds1307

UART_Init(9600); //initialize the UART

 for(i=0;i<7;i++)

 DS1307Write(i,data[i]);

 DelayMs(20); //provide a delay

while(1)

 {

 sec=DS1307Read(0); // Read second

 min=DS1307Read(1); // Read minute

Programming with PIC Microcontroller

www.researchdesignlab.com Page 68

 hour=DS1307Read(2); // Read hour

 day=DS1307Read(3); // Read day

 date=DS1307Read(4); // Read date

 month=DS1307Read(5); // Read month

 year=DS1307Read(6); // Read year

 printf("Time: %x : %x : %x ",(hour&0x1f),min,sec); //Display the Hours, Minutes,

 Seconds(hours is taken from 5 LSB bits)

 printf("Date: %x / %x / %x \r",date,month,year); //Display the Date, Month, Year

 DelayMs(150); //provide a delay

 }

}

 void DS1307Write(unsigned char addr, unsigned char data)

{

 SEN=1; //Initiate Start condition on SDA & SCL pins

 WaitMSSP();

 SSPBUF=LC01CTRLIN; // Slave address + Write command

Programming with PIC Microcontroller

www.researchdesignlab.com Page 69

 WaitMSSP();

 SSPBUF=addr; // Write the location

 WaitMSSP();

 SSPBUF=data; // Write the Data

 WaitMSSP();

 PEN=1; // Enable the Stop bit

 WaitMSSP();

}

unsigned char DS1307Read(unsigned char addr)

{

 unsigned char x;

 RSEN=1; // Enable the repeated Start Condition

 WaitMSSP ();

Programming with PIC Microcontroller

www.researchdesignlab.com Page 70

 SSPBUF=LC01CTRLIN; // Slave address + Write command

 WaitMSSP ();

 SSPBUF=addr; //Write the location (memory address of Hour, minute, etc...)

 WaitMSSP ();

 RSEN=1; // Enable the repeated Start Condition

 WaitMSSP ();

 SSPBUF=LC01CTRLOUT; // Slave address + Read command

 WaitMSSP ();

 RCEN=1; // Enable to receive data

 WaitMSSP ();

 ACKDT=1; // Acknowledge the operation (Send NACK)

 ACKEN=1; // Acknowledge sequence on SDA & SCL pins

 PEN=1; // Enable the Stop bit

 WaitMSSP ();

 x=SSPBUF; // Store the Receive value in a variable

Programming with PIC Microcontroller

www.researchdesignlab.com Page 71

 return (x);

}

 void WaitMSSP()

{

 while(!SSPIF); // SSPIF is zero while TXion is progress

 SSPIF=0;

}

void ds1307_init()

{

 TRISC3=1; // RC3,RC4 set to I2C Mode(Input)

 TRISC4=1;

 SSPCON=0x28; // Enable the SDA,SCL & I2C Master Mode

 SSPADD=(FOSC / (4 * I2C_FREG)) – 1;// SSP baud rate 100Khz

 SSPSTAT=0x80; // Disable slew Rate control

 PORTC=0x18;

Programming with PIC Microcontroller

www.researchdesignlab.com Page 72

 DS1307Write(0,0x00);

}

void putch(unsigned char byte) //Required for printf statement

{

 while(!TXIF); // Wait for the Transmit Buffer to be empty

 TXREG = byte; // Transmit the Data

}

void DelayMs(unsigned int Ms) //Function to provide a delay

{

 int delay_cnst;

 while(Ms>0)

 {

Programming with PIC Microcontroller

www.researchdesignlab.com Page 73

 Ms--;

 for(delay_cnst = 0;delay_cnst <220;delay_cnst++);

 }

}

char UART_Init(const long int baudrate) //function to initialize the UART

{

 unsigned int x;

 x = (_XTAL_FREQ - baudrate*64)/(baudrate*64);

 if(x>255)

 {

 x = (_XTAL_FREQ - baudrate*16)/(baudrate*16);

 BRGH = 1; //High Baud Rate Select bit set to high

 }

 if(x<256)

 {

 SPBRG = x; //Writing SPBRG register

 SYNC = 0; //Selecting Asynchronous Mode

 SPEN = 1; //enables serial port

 TRISC7 = 1;

 TRISC6 = 1;

 CREN = 1; //enables continuous reception

 TXEN = 1; //enables continuous transmission

 return 1;

 }

 return 0;

}

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

Research
Design Lab

www.researchdesignlab.com
Email: sales@researchdesignlab.com I www.researchdesignlab.com

An ISO 9001- 2008 Certified Company

Pic Development Board

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

All digital circuits require regulated power
supply. Here is a simple power supply circuit
diagram used on this board.
You can use AC or DC source (12V) which
converts into regulated 5V which is required for
driving the development board circuit.

Power supply, 5V-12V

Select the IC's from the given list and mount on the ZIF socket. ZIF socket pin maps out PORT1
PORT2 PORT3 PORT4 for easy making connections for the rest of the circuit. Port 1 is enabled with
pull up circuit and also connected ISP for easy on board Programming.

1. 40 pin ZIF socket for IC mount & ISP connector*

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

2. Reset

One seven segment digit consist of 7+1 LEDs which are arranged in a specific formation which
can be used to represent digits from 0 to 9 and even some letters. One additional LED is used for
marking the decimal dot, in case you want to write a decimal point in the desired segment.

3. Node connector

Resets your microcontroller by pressing s23 Node connector is an additional on board
connection extender or 1 connection IN
and 1 connection out

4. 4 digit 7 segment display

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

26 Pin raspberry connector is an easy way for
making connections with raspberry pi with
this development board.

Arduino Shield footprint is provided in the
board to mount different types of Arduino
compatible shields on this development
board.

5. 26 pin raspberry connector 6. Arduino Shield footprint

IC ULN2803 consists of octal high voltage, high current darlington transistor arrays. The eight NPN
Darlington connected transistors in this family of arrays are ideally suited for interfacing between
low logic level digital circuitry (such as TTL, CMOS or PMOS/NMOS) and the higher
current/voltage requirements of lamps, relays, printer hammers or other similar loads for a
broad range of computer, industrial, and consumer applications.

7. ULN 2803 driver

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

Features

The ULN 2803 IC consists of eight NPN Darlington
connected transistors (often called a Darlington
pair). Darlington pair consists of two bipolar
transistors such that the current amplified by
the first is amplified further by the second to
get a high current gain β or hFE. The figure
shown below is one of the eight Darlington pairs
of ULN 2803 IC.

Now 2 cases arise:-
Case 1: When IN is 0 volts.
Q1 and Q2 both will not conduct as there is no
base current provided to them. Thus, nothing
will appear at the output (OUT).

Case 2: When IN is 5 volts.
Input current will increase and both transistors Q1 and Q2 will begin to conduct. Now, input
current of Q2 is combination of input current and emitter current of Q1, so Q2 will conduct more
than Q1 resulting in higher current gain which is very much required to meet the higher current
requirements of devices like motors, relays etc. Output current flows through Q2 providing a path
(sink) to ground for the external circuit that the output is applied to. Thus, when a 5V input is
applied to any of the input pins (1 to 8), output voltage at corresponding output pin (11 to 18)
drops down to zero providing GND for the external circuit. Thus, the external circuit gets
grounded at one end while it is provided +Vcc at its other end. So, the circuit gets completed and
starts operating.

Working

• Eight Darlingtons with Common Emitter.
• Open–collector outputs.
• Free wheeling clamp diodes for
 transient suppression.
• Output Current to 500 mA.
• Output Voltage to 50 V.
• Inputs pinned opposite outputs
 to simplify board layout.

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

One IC that wants to talk to another must: (Protocol)
1) Wait until it sees no activity on the I2C bus. SDA and SCL are both high. The bus is 'free'.

2) Put a message on the bus that says 'its mine' - I have STARTED to use the bus. All other ICs then
LISTEN to the bus data to see whether they might be the one who will be called up
(addressed).

3) Provide on the CLOCK (SCL) wire a clock signal. It will be used by all the ICs as the reference
time at which each bit of DATA on the data (SDA) wire will be correct (valid) and can be used.
The data on the data wire (SDA) must be valid at the time the clock wire (SCL) switches from
'low' to 'high' voltage.

4) Put out in serial form the unique binary 'address'(name) of the IC that it wants to
communicate with.

5) Put a message (one bit) on the bus telling whether it wants to SEND or RECEIVE data from the
other chip. (The read/write wire is gone!)

6) Ask the other IC to ACKNOWLEDGE (using one bit) that it recognized its address and is ready to
communicate.

7) After the other IC acknowledges all is OK, data can be transferred.

8) The first IC sends or receives as many 8-bit words of data as it wants. After every 8-bit data
word the sending IC expects the receiving IC to acknowledge the transfer is going OK.

9) When all the data is finished the first chip must free up the bus and it does that by a special
message called 'STOP'. It is just one bit of information transferred by a special 'wiggling' of the
SDA/SCL wires of the bus.

8. I2C bus

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

Serial to Peripheral Interface (SPI) is a hardware/firmware communications protocol developed
by Motorola and later adopted by others in the industry. Microwire of National Semiconductor is
same as SPI. Sometimes SPI is also called a "four wire" serial bus.

The Serial Peripheral Interface or SPI-bus is a simple 4-wire serial communications interface used
by many microprocessor/microcontroller peripheral chips that enables the controllers and
peripheral devices to communicate each other. Even though it is developed primarily for the
communication between host processor and peripherals, a connection of two processors via SPI is
just as well possible.

The SPI bus, which operates at full duplex (means, signals carrying data can go in both directions
simultaneously), is a synchronous type data link setup with a Master / Slave interface and can
support up to 1 megabaud or 10Mbps of speed. Both single-master and multi-master protocols are
possible in SPI. But the multi-master bus is rarely used and look awkward, and are usually limited
to a single slave.

The SPI Bus is usually used only on the PCB. There are many facts, which prevent us from using it
outside the PCB area. The SPI Bus was designed to transfer data between various IC chips, at very
high speeds. Due to this high-speed aspect, the bus lines cannot be too long, because their
reactance increases too much, and the Bus becomes unusable. However, its possible to use the SPI
Bus outside the PCB at low speeds, but this is not quite practical.

The peripherals can be a Real Time Clocks, converters like ADC and DAC, memory modules like
EEPROM and FLASH, sensors like temperature sensors and pressure sensors, or some other devices
like signal-mixer, potentiometer, LCD controller, UART, CAN controller, USB controller and
amplifier.

9. SPI bus

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

All XBeeZNet 2.5 modules can be identified by their unique 64-bit addresses or a user-
configurable ASCII string identifier The 64-bit address of a module can be read using the SH and SL
commands. The ASCII string identifier is configured using the NI command.

To transmit using device addressing, only the destination address must be configured. The
destination address can be specified using either the destination device's 64-bit address or its NI-
string. The XBee modules also support coordinator and broadcast addressing modes. Device
addressing in the AT firmware is configured using the DL, DH, or DN commands. In the API
firmware, the ZigBee Transmit Request API frame (0x10) can be used to specify destination
addresses.

To address a node by its 64-bit address, the destination address must be set to match the 64-bit
address of the remote. In the AT firmware, the DH and DL commands set the destination 64-bit
address. In the API firmware, the destination 64-bit address is set in the ZigBee Transmit Request
frame. ZigBee end devices rely on a parent (router or coordinator) to remain awake and receive
any data packets destined for the end device. When the end device wakes from sleep, it sends a
transmission (poll request) to its parent asking if the parent has received any RF data destined for
the end device. The parent, upon receipt of the poll request, will send an RF response and the
buffered data (if present). If the parent has no data for the end device, the end device may
return to sleep, depending on its sleep mode configuration settings. The following figure
demonstrates how the end device uses polling to receive RF data through its parent.

10. XBEE footprint/ XBEE Adaptor module

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

A standard FT232 breakout board from
researchdesignlab.com could be used
to interface on these connectors,
whose other end is connected to a USB.

These connectors provide on board
3.3V DC connections.

RS-232 is a standard communication protocol for linking computer and its peripheral devices to
allow serial data exchange. In simple terms RS232 defines the voltage for the path used for data
exchange between the devices. It specifies common voltage and signal level, common pin wire
configuration and minimum, amount of control signals.

11. FT232 breakout
 board connector

12. DC 3.3V connectors

13. DB-9 female connector

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

LED's are used to indicate something,
whether any pin is high or indicating
the output for many purposes like
indicating I/O status or program
debugging running state. We have
four led outputs on board which can
be used by the programmer as per the
requirement for testing and
development.

DIP switches are an alternative to jumper blocks. Their main advantages are that they are quicker
to change and there are no parts to lose.

The DS1307 Serial Real Time Clock is a low power, full BCD clock/calendar plus 56 bytes of
nonvolatile SRAM. Address and data are transferred serially via a 2-wire bi-directional bus. The
clock/calendar provides seconds, minutes, hours, day, date, month, and year information. The
end of the month date is automatically adjusted for months with less than 31 days, including
corrections for leap year. The clock operates in either the 24-hour or 12-hour format with AM/PM
indicator. The DS1307 has a built-in power sense circuit which detects power failures and
automatically switches to the battery supply.

14. 8x1 LED's

15. 8 way DIP switch

16. RTC Module

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

The DS1307 operates as a slave device on the serial bus. Access is obtained by implementing a
START condition and providing a device identification code followed by a register address.
Subsequent registers can be accessed sequentially until a STOP condition is executed. When VCC
falls below 1.25 x VBAT the device terminates an access in progress and resets the device address
counter. Inputs to the device will not be recognized at this time to prevent erroneous data from
being written to the device from an out of tolerance system. When VCC falls below VBAT the
device switches into a low current battery backup mode. Upon power up, the device switches
from battery to VCC when VCC is greater than VBAT +0.2V and recognizes inputs.

Features:
1. 56 byte nonvolatile RAM for data storage
2. 2-wire serial interface
3. Programmable square wave output signal
4. Automatic power-fail detect and switch circuitry
5. Consumes less than 500 nA in battery backup mode with oscillator running
6. Optional industrial temperature range -40°C to +85°C
7. Available in 8-pin DIP or SOIC
8. Recognized by Underwriters Laboratory

Operation

PIN DESCRIPTION
1. VCC - Primary Power Supply
2. X1, X2 - 32.768 kHz Crystal Connection
3. VBAT - +3V Battery Input
4. GND - Ground
5. SDA - Serial Data
6. SCL - Serial Clock
7. SQW/OUT - Square wave/Output Driver

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

IC, EEPROM I2C 4K, 24C04, DIP8

Memory Size: 4Kbit

Memory Configuration: 512 x 8

Interface Type: I2C, Serial

Clock Frequency: 400kHz

Supply Voltage Range: 2.5V to 5.5V

Memory Case Style: DIP

No. of Pins: 8

Operating Temperature Range: -40°C to +85°C

SVHC: No SVHC (19-Dec-2011)

Base Number: 24

Device Marking: M24C04

IC Generic Number: 24C04

Interface: I2C

Interface Type: Serial, I2C

Logic Function Number: 24C04

Memory Configuration: 512 x 8

Memory Size: 4Kbit

Memory Type: EEPROM

Memory Voltage Vcc: 2.5V

Operating Temperature Max: +85°C

Operating Temperature Min: -40°C

Package / Case: DIP

Supply Voltage Max: 5.5V

Supply Voltage Min: 2.5V

Termination Type: Through Hole

Voltage Vcc: 2.5V

17. EEPROM

Node connector is an additional on board connection extender
or 1 connection IN and 1 connection OUT

18. 2x5x2 jumper node

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

19. DC 5V connectors

These connectors provide
on board 5V DC connections.

The Potentiometer Option allows the user to adjust the frequency reference by rotating a
potentiometers dial. Turning the potentiometer changes the frequency reference making it
easier to adjust the motor speed and also to set the duty cycle for PWM values.

Switches are mainly used to
switch the controls of a
module. We have four switches
on board which can be used by
the programmer as per the
requirement for testing and
development

20. Potentiometer

21. 4x1 keypad

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

LCD screen consists of two lines with 16 characters each. Each character consists of 5x7 dot
matrix. Contrast on display depends on the power supply voltage and whether messages are
displayed in one or two lines. For that reason, variable voltage 0-Vdd is applied on pin marked as
Vee. Trimmer potentiometer is usually used for that purpose. Some versions of displays have built
in backlight (blue or green diodes). When used during operating, a resistor for current limitation
should be used (like with any LE diode). LCD Connection Depending on how many lines are used
for connection to the microcontroller, there are 8-bit and 4-bit LCD modes. The appropriate mode
is determined at the beginning of the process in a phase called “initialization”. In the first case,
the data are transferred through outputs D0-D7 as it has been already explained. In case of 4-bit
LED mode, for the sake of saving valuable I/O pins of the microcontroller, there are only 4 higher
bits (D4-D7) used for communication, while other may be left unconnected.

Consequently, each data is sent to LCD in two steps: four higher bits are sent first (that normally
would be sent through lines D4-D7), four lower bits are sent afterwards. With the help of
initialization, LCD will correctly connect and interpret each data received. Besides, with regards
to the fact that data are rarely read from LCD (data mainly are transferred from microcontroller
to LCD) one more I/O pin may be saved by simple connecting R/W pin to the Ground. Such saving
has its price. Even though message displaying will be normally performed, it will not be possible
to read from busy flag since it is not possible to read from display.

Features:
1. Can display 224 different symbols.
2. Low power consumption.
3. 5x7 dot matrix format.
4. Powerful command set and user produced characters.

Fig: Circuit connections of LCD

22. 16x2 LCD connectors

10k

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

1. Gnd:- Power supply ground
2. VCC:-+5v Power supply input
3. RS:- Reset pin

Node connector is an additional on board connection extender or 1 connection IN and 1
connection out

4. R/W:- Read/Write pin
5. En:-Enable pin
6. D0-D7:- Data lines

Pin Description

23. Node connector

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

In a 4x4 matrix keypad eight Input/Output ports are used for interfacing with any
microcontrollers. Rows are connected to Peripheral Input/Output (PIO) pins configured as
output. Columns are connected to PIO pins configured as input with interrupts. In this
configuration, four pull-up resistors must be added in order to apply a high level on the
corresponding input pins as shown in below Figure. The corresponding hexadecimal value of the
pressed key is sent on four LEDs.

This Application Note describes programming techniques implemented on the AT91 ARM-based
microcontroller for scanning a 4x4 Keyboard matrix usually found in both consumer and industrial
applications for numeric data entry.AT91 Keyboard interface In this application, a 4x4 matrix
keypad requiring eight Input/Output ports for interfacing is used as an example. Rows are
connected to Peripheral Input/Output (PIO) pins configured as output. Columns are connected to
PIO pins configured as input with interrupts. In this configuration, four pull-up resistors must be
added in order to apply a high level on the corresponding input pins as shown in Figure 1. The
corresponding hexadecimal value of the pressed key is sent on four LEDs.

FEATURES
1. Contact debouncing.
2. Easy to interface.
3. Interfaces to any microcontroller or microprocessor.
4. Data valid output signal for interrupt activation.

PIN DETAILS
pin 1-4: R0-R3:- Rows
pin 5-8: C0-C3:- Columns

24. 4x4 Matrix Keypad

Working

25. DC 12V connectors

These connectors provide on board
12V DC connections.

	pic.pdf (p.1-74)
	INTRODUCTION
	EMBEDDED SYSTEMS
	PIC16F877A
	Overview:
	MPLAB IDE:

	GETTING STARTED WITH EMBED C PROGRAMMING:
	Lab 1 . LED Blinking using PIC controller (16F877A) with MPLAB:
	Lab2.To display a message on LCD using pic controller
	Lab3.Interfacing ADC to display analog to digital conversion values on LCD.
	Lab 6. Interfacing KEYPAD to display value on LCD when a key is pressed.
	Lab7. Interfacing 7segment
	Lab 8. Interfacing GSM modem to send and receive the message
	Lab 9. Interfacing RELAY to turn the relays ON and OFF.
	Lab 10. Display a message using I2c Protocol
	Lab 11. Working with RTC and controller

	Pic Development Board.pdf (p.75-90)

