Programming With AVR
Microcontroller

#
i3
e WA 5 L
Wik OISR N, 4
prr e o
p— b 4 A . B

-%qgil‘qi“\

INTRODUCTION TO AVR

GETTING STARTED WITH
1. AVR STUDIO

2. AVR OSP

3. SINA PROG

INTERFACING

1. LCD,KEYPAD

2. ADC,I2C,SERIAL,PWM
ATMEGA DEVELOPMENT BOARD

@ Resg.-arch
Design Lab Atmega 16/32 Microcon troller

ATMEGA 16/32
MICROCONTROLLER

www.researchdesignlab .com

@ Resg.-arch
Design Lab Atmega 16/32 Microcontroller

Table of Contents

OVERVIEW ... iiiiiiiiisiiissns s ssmsssssssssssssssssssss sassssssss smsssss sessmssssssmsans nmsssss snssmsssnssmssnssnnssnssns snssanssnsnans 3
o 1 3
PIN DESCRIPTION: ...coiiiiotiitisnisnissmsssissssansssssssssssssssssssssssssns nnsssssssssssssssssssss snnssassss ssnssanssnssnssssssassnssnnsnas 5
WRITING THE CODE ... crsccrsnnsnsisssssssssss s ssmssssssessmsssssssssssssnssassss snnssasssnssmssssssmssmssnsssmssns snnssns 7
T N ¥ . 11U N 7
BURNING THE CODE ... cicmiicmssssssismsssssssssssssssssssssssssssssssssmssssssnssns ssssssssss nnssassss ssnssssssnssmsssnssasan 14
T Y T oL 14
2. SINA PROG 2.1.....cuuueeieiiiiiiinnnneeeniisssnnsssssssssssns 22
D0 2 I N O 25
1. LED BLINKING ...ccuueeiiiiiiiiiiisnneetiisssssssssssesssnsssssssssssssssnsssssssssssns 25
2 0 RN 27
3. PULSE WIDTH MODULATIONccttiiiruttiissnrenssssnssssssssesssasssssss 30
R -\ 0 TSRS PP PR PTP 32
e TR 14 =1 7Y 0 N 36
SERIAL COMMUNICATION: ..coictistiimssnisemsnssssssasssssssssassssssssssssssssssssssssssnssssessssss ssnssassssssnssasssnssssssnssansn 39
WHat iS the USART?eueeeeiiiiiiniinnniniisiisisssnisissnsnss 39
Setting UP the HardWare..........iiiiiiiieeiiiiiiineenniinnnineeesnnsssssssnsssssssssssssssssssssssssssssssesssssssssssnssssssssssssssssssssssss 39
Setting UP HYPerTermMiNal.... .. . eeeeeeuiiiuiniiiiiniinneninnssissesssnsnns 40
INIEIAlIZING the USARTcciiiiiiiiiiiiiiiiiiiiiiiisirissesssns 43
Sending and reCeIVING data......ccccccccvrnnnnnnnnnunnnnnnunnnsssssissssssssssssssssssssss s s s s sssssssssssssssssssssssssssssssssssssssass 44
000 0 N 45

www.researchdesignlab.com

@ Resg.-arch
Design Lab Atmega 16/32 Microcontroller

OVERVIEW:

ATmegalb6 is an 8-bit high performance microcontroller of Atmel’s Mega AVR
family with low power consumption. Atmegal6 is based on enhanced RISC
architecture with 131 powerful instructions. Most of the instructions execute in one
machine cycle. Atmegal6 can work on a maximum frequency of 16 MHz.

PORTS:
There are 32 1/0 (Input/Output) pins grouped as A, B, C & D with 8 pins in each
group. This group is called as PORT.

PAO - PA7 (PORTA)
PBO - PB7 (PORTB)
PCO - PC7 (PORTC)
PDO - PD7 (PORTD)

These are additional function that pin can perform other
than 1/0. Some of them are.

« ADC (ADCO - ADC7 on PORTA)

« UART (Rx,Tx on PORTD)

« TIMERS (OCO - OC2)

* SPI (MISO, MOSI, SCK on PORTB)

* External Interrupts (INTO - INT2)

www.researchdesignlab.com Page 3

\ Research
Design Lab

xcx/To) peo 1
(T1) PB1 [P
anr2/aino) pe2 I3
(oco/ain1) re3 2
(ss)pea 5
(mosi)res 6
(mosi)res |7
sck)pe7 8
reser o

vee 10

eno P11

xtaz 12

xta1 13

(rxo) oo {14
mxo)ep1 15
unto)ro2 16
ant)eos 17
(ocis)ppa 18
(ocia)pos 19
ncey)pos 20

www.researchdesignlab.com

Pomzg P

Atmega 16/32 Microcontroller

. PAO (ADCD)
B rai(ancy)
B raoa00
B ras(ancs)
B r2a(anca)
B ras(ancs)
B ras(aocs)
B rar(ancy)

B 2rer
B e
B avcc

B rcrroscy
B rcs(roscy

B rcs(oy)
B rcatoo)
B rc3(rvis)
[Pcairek)
[rcispa)
[rcoscy)
[ro7(0c2)

@ Resgarch
Design Lab Atmega 16/32 Microcontroller

PIN DESCRIPTION:
e VCC: Digital supply voltage. (+5V)
e GND: Ground. (0 V) Note there are 2 ground Pins.
e Port A (PA7 - PA0)

Port A serves as the analog inputs to the A/D Converter. Port A also serves
as an 8-bit bi-directional 1/O port, if the A/D Converter is not used. When
pins PAO to PA7 are used as inputs and are externally pulled low, they will
source current if the internal pull-up resistors are activated. The Port A pins
are tri-stated when a reset condition becomes active, even if the clock is not
running.

e Port B (PB7 - PBO)

Port B is an 8-bit bi-directional 1/O port with internal pull-up resistors
(selected for each bit). Port B also serves the functions of various special
features of the ATmegal6 as listed on page 58 of datasheet.

e Port C (PC7 - PCO)

Port C is an 8-bit bi-directional 1/O port with internal pull-up resistors
(selected for each bit). Port C also serves the functions of the JTAG
interface and other special features of the ATmegal6 as listed on page 61 of
datasheet. If the JTAG interface is enabled, the pull-up resistors on pins
PC5 (TDI), PC3 (TMS) and PC2 (TCK) will be activated even if a reset
occurs.

e Port D (PD7 - PDO)

Port D is an 8-bit bi-directional 1/0 port with internal pull-up resistors
(selected for each bit). Port D also serves the functions of various special
features of the ATmegal6 as listed on page 63 of datasheet.

www.researchdesignlab.com Page 5

@ Resg.-arch
Design Lab Atmega 16/32 Microcontroller

e RESET: Reset Input. A low level on this pin for longer than the
minimum pulse length will generate a reset, even if the clock is not
running.

e XTALL: External oscillator pin 1

e XTALZ2: External oscillator pin 2

e AVCC: AVCC is the supply voltage pin for Port A and the A/D
Converter. It should be externally connected to VCC, even if the
ADC is not used. If the ADC is used, it should be connected to VCC
through a low-pass filter.

e AREF: AREF is the analog reference pin for the A/D Converter.

www.researchdesignlab.com Page 6

Research
¥ Design Lab

Atmega 16/32 Microcontroller

WRITING THE CODE

1. AVRSTUDIO

Setup:

1. open AVR studio 4

2. click new project

3. Select AVR GCC as we would be doing program in ¢ and enter the
project name.

Create new project

Praoject type: Praject name:

& Atmel 23R Azsembler |

[v Create inttialfile [Create folder

Initial file:

|
Location:

|F:'\atmega‘aprngrams

Yer 414529 W Show dialog at startup

Cancel

www.researchdesignlab.com Page 7

Research
Design Lab

Atmega 16/32 Microcontroller

4. Add your project name. Here | have given my project name as serial and
it will automatically create your initial file name in .c format

Create new project
Project tupe: Project name:

& Atmel AVR Assembler |seria|
“3 AVR GCC

¥ Create initial file [Create folder

[ritial file:

|serial

Location:

|F:'xatmega'xprngrams

Mest = Finizh Cancel

5. click on next

www.researchdesignlab.com Page 8

Research
Design Lab

Atmega 16/32 Microcontroller

6. Select AVR simulator in debug platform and in the Device select the
Device your using as here | am using ATmega 16 i have selected that. (for
Atmega 32 select Atmega 32).

Select debug platfarm and device
Debug platfarm: Device:

AWE Dragon

AWE Sirnulator ATmegalBl
AWE Simulatar 2 ATmegalB2
ICE200 ATmegalEl
ICE40 ATmegalE4F
ICERD ATmegalBh
JTAG ICE ATmegalEEF
JTAGICE mikll ATmegalEd
ATmegalBaF
ATmegalEd
ATmegalBaF

Yer 4.14.589

<< Back | | Finizh Caricel

7. click on finish

www.researchdesignlab.com Page 9

¥4 Research
Design Lab

Atmega 16/32 Microcontroller

8. This is the default window you will see after you click on finish and
project name called serial will get open

Efllf Project Build View Tools Debug Help
EHIUEREICEHRAR AN
R YT TT DR

g “ serial (default)*
-4 Source Files

EEN Y I n 09 EEENENS HHEAE
bS X

#-[ed -8

: /YA CONVERTER .
424 Header Files =
3 AT} MALOG CONPARA.
-4 Eitemal Dependencies S BB00T_L0W
- Other Files 4 BEPU)

BEEE

+ S EXTERNAL_INTERR..
H307TAG

52 PORTA

+ 2 PORTE

1 Z2PORTC

42 PORTD

HE50

+ [TER_COUNTER D
ER_COUNTER_I

v
=
Name Address Value Bts
=
! File Project Build Edit View Tools Debug Window Help
DSd@ v s ndI 2R M AIIRESZYIP a na»EESNE NS GEREARE
E||] Ncwﬁle[cthl- i) £
New file
Senal (defaut % - [=[] M
/E3 Source Files +JT>AD_CONVERTER =
/=4 Header Files +/T)ANALOG_COMPARA.
429 External Dependencies +/[E)800T_LOAD
-3 Other Files “@cru
+/ B EEFROM
+ S EXTERNAL_INTERR.
I EUTAG
/22 PORTA
+/ 22 PORTB
+/ 22 PORTC
/22 PORTD
PEEE
+ B TIMER_COUNTER_D L |
+/{D TIMER_COUNTER_1
+ (D TIMER_COUNTER_2
EER] 5
= TV
Name Addess Value Bits

| v | Bleam S

10. Type the program and save it .To compile the files first you need to add
files in your source for doing that right click on the source file and then

www.researchdesignlab.com Page 10

¥4 Research
Design Lab

Atmega 16/32 Microcontroller

click on add existing source file

' Filz Project Build View Tools Debug Help
NEHdF VLRSI ER AARABET EV PO 10 B EH0 0 i ga00E
Macebisbled | %% T R

E" serial (default)” ;1& .
- Ad Evisting Source Fle(s). 4 BAD_EDN‘-’ERTER

¥ =/ TANALOG_COMPARA. .
Create Mew Source File... B E00TL0D
BlERT
- EJEEPROM
| CHEXTERNAL_INTERR..
HEITAG
+| R PORTA
/=2 PORTB
| S2FORTC
/=B FORTD
EEwEl
/B TIMER_COUNTER_D
=/ ¥ TIMER_COUNTER_1
+ [TIMER_COUNTER 2
12 TWI

Name Address Valuz Bts

Show File Paths
Edit Configuration Options...

11.Now inside that source file their will be your file saved here the file
name | have used is urted

www.researchdesignlab.com Page 11

: Research
Design Lab

AVR Studio - [FA:

File Project Build Edit

AVR GCC
=98 serial (default)*
Ea Source Files
S uecd
----- a Header Files
- &-4=9 External Dependencies
-5 Other Files

Atmega 16/32 Microcontroller

View Tools Debug Window Help

= Y=Y LMY

Trace Disabled SR LS . Y]

!
Il

{E @

* X #include <avr~io. h:
#include <avr-interrupt.h>
finclude <utilsdelav. hy
#define SETBIT(ADDRESS.EBIT) (ADDEESS |= (1<<BIT))
#define CLEARBIT(ADDEESS,BIT) (ADDRESS &= ~(1<<BIT))
#define FLIPEIT(ADDREESS BIT) (ADDRESS "= (1<<BIT))

wvolatile uint8_t mv_flag;
wold u=art_init{woid):;

wold u=zart_init(void)

#define CHECKEIT(ADDEESS BIT) (ADDRESS & (1<<EIT))
#define WRITEBIT(RADDRESS, REIT.WADDRESS, WEIT) (CHECKEIT(RADDRESS,EB

UCSEE = (1 << REEN) | (1 << TEEN) | (1 << RECIE) . »<~EHNABLE RE
UZSRC = {1 << UCSZ1) | (1 << UCSZ0Y | §1 << URSEL): ~~USE & BIT
UBREL = 0=33;
int main{woid)
DDRA = O=xFF; SoPORT A IS QUTPUT
uzart_init():
TR = 1 ¢ THT2Y - AAFHARTF FYTFREHAT THTFRRETIPT 2 MW POART B2
4
. b Fatmegal AVREVADCWADC urted.c
Build
AVR Studio - i
File Project | Build | Edit Miew Tools Debug Window Help _&
SI=1= 1 - ELH.V By i ufE = O P i F 5
Trace Disabled | Rebuid Al T o) B B i
AVR GEC ; IR Finclude <avrrio h» VO View -
o Compil #includs h - T I
=8 S st aun finotue v inermp FREE] :
23 Source Fi
| EEEE evortmakere #define SETBIT(ADDRESS,BIT) (ADDRESS |= (1¢<BIT)) I LyAD_CONVERTER
= #define CIEARBIT(ADDRESS, BIT) (ADDRESS &= ~(1c¢<BIT)) +J) ANALOG_COMPARA
424 Header Files #def ine FLIEBIT{ADDRESS, BIT) (ADDRESS "= (1<<BIT}} +| B BOOT_LOAD
24 External Dependencies #defins CHECKBIT(ADDRESS. BIT) (ADDRESS & (1<<BIT)) LBcru
423 Other Files #define VRITEELT(RADDRESS. REIT. WACDRESS, WELT) (CHECKBIT(RADRESS,REIT) ? SETEIT(VADDRESS || S conoy
volatile wintf_t my_flag; 1 G5 EXTERNAL_INTERR...
. : 2 H2ITAG
void usart_init(veid): 12 PORTA
void usart_init(wveoid) -+ 52 PORTB
4| PORTC
UCSRE = (1 << REEN) | (1 << TEN) | (1 <¢ RXCIE} . //EWARIE RECETVER TRANSHITTER A1 || 38 pormp
UCSRC - {1 << DCSZL: | (L << UCSZ0) | {1 << URSEL)} ~USE O DIT DAT& TRAVSFER &lD ol =
UBRRL = 0x33: 1 395PI
3 1 B TIMER_COUNTER_O
d -+ (B TIMER_COUNTER_1
int nain{veid) -+ B TIMER_COUNTER_2
BEEn
DORA - GAFF, | //PORT 415 oUTEUT Nme o ven o
STER = 1 ¢« THT?Y <sFNARTF FY¥TFRHT THTFRRIIPT 2 NN PART R™2 Jﬂ
4 »

< b

Build

www.researchdesignlab.com

F\atmega\AVR\ADC\ADC\urted.c

4 b

- X

Page 12

@ Research
Design Lab Atmega 16/32 Microcontroller

13. If your program has no errors it will be successfully build and it will
show the build window like this

Build
{.text + .data + .bootloader)
Data: 9 bytes (0.9% Full)

{.data + .b3s + .noinit)

Build succeeded with 4 Warnings...

q | I

=] Build °I‘.-1essage —ﬂFindinFiIes jBreakpaints and Tracepoints

TO BURN THE PROGRAM IN YOUR MICROCONTROLLER YOU NEED A BURNER
FOR BURNING WE USE AVR OPS-2

www.researchdesignlab.com Page 13

Research
Design Lab

Atmega 16/32 Microcontroller

BURNING THE CODE

1. AVR osp-2

1. click on avr osp
2. The default avr osp 2 will look like this

Program | Fuse Bits I Lock Bits | Advanced I Configure | Help I

— Device — Auto program settings
INu device selected LI Auto Detect W Erase device before programming
¥ Verfy device after programming
¥ Send Exit after programming

[ElaseDevice][Auto H Send Edt l

—EEPROM
|

(oo] (e) (R) | (Foven) (e) (et]

—FLASH Range —EEPROM Range
Start: End: Start: End:

[™ Userangs |{bd}|] |{bd}|] [Use rangs |{M}|] |{§d}|]

www.researchdesignlab.com Page 14

@ Research
Design Lab Atmega 16/32 Microcontroller

3. First you need to configure your avr osp to check its connected to the
same com port or not and default Baud rate

Program] Fuse Bits] Lock Bits] Advanced Corfigure l Help]

Communication Setup General Settings
Port Baud [¥ Restore cument settings on startup
|CDI'-.-1 2 j |'I 15,200 ﬂ [+ Prompt before programming fuses
IT Mumber of calibration bytes to send """

Pratacal

f+ AVRI1
" OSPIl

www.researchdesignlab.com Page 15

\ Research
Design Lab

Atmega 16/32 Microcontroller

4. you can manually select the device which you are using or else u can

even auto detect it

Program l Fuse Bits] Lock Bits] Advanced] Configure] Help]

Device

|N|:| device selected

=}

Auto Detect

ATS058535
ATS05853hcomp
ATmegalll
ATmeqga103comp
ATmegalZd
ATmegal12s0
ATmegal2il
ATmegalkl
ATmegal&lcomp
ATmegale2
ATmegaled
ATmegaleh
ATmegales
ATmegales
ATmegazss0
ATmegaZbel
ATmegad?

-~

e

— [ooe)
=R

End:

Auto program settings
[+ Erase device before programming
¥ Verfy device after programming
[+ Send Exit after programming

[Erase Device] [futo l [Send Exit]

EEPROM
|

[F'n:ngmm] [Werify] [Read]

EEPROM Range
Start: End:

|00 |00

| Userange

5. In device select which device you are using as here | am using

ATmega 16 | have selected that .Even you can Auto Detect your
device that option will automatically Detect your Device which you

www.researchdesignlab.com

Page 16

@ Research
Design Lab Atmega 16/32 Microcontroller

are using

Program l Fuse Bits] Lock Bits] Advanced] Corfigure] Help]

Device Auto program settings

ATmegalb - v Erase device before programming

v Verfy device after programmin
153284 d? . g

51z Iv¥ Send Exit after programming
128
e les e el [Elase Device] [Auto] [Send Bt]

Flash =size
EEProm size
Page size
Signature

FLASH EEFROM
|F:"-atmega"‘ﬂmgmms"-;:lefauh"-ﬁﬂﬂ'i |

[F‘n:uglam] [Verfy] [Read] [F‘mgmm] [Verify] [Read]

FLASH Range EEFROM Range
Start: End: Start: End:

[~ Userange [mxDD [0 [Userange |00 |0:<00

6. after pressing auto detect you will see this means that your
microcontroller has been detected and it read to flash program on to it

Checking programmer type - - -
Found AVE ISP

Entering programming mode. . .
Signature = OxFF OxFF OxFF
Leaving programming mode. . .

7. To flash the program on the Microcontroller You Browse the program
and Then click on program after click on the program it will flash the

www.researchdesignlab.com Page 17

4 Research
¥ Design Lab

Atmega 16/32 Microcontroller

program.

Program l Fuse Bits] Lock Bits] Advanced] Configure] Help]

Device

|}-'-.Tmega 16

Flash size
EEProm size
Page size
Signature

FLASH

j | Auto Detect

16384

51z

128

OxlE 0Ox94 0x03

|F:"-atmega"-pn:nglams"-defauh"-seri:

| Program | | Vedy | | Read |

FLASH Range

Start:

End:

[Userange

{000

{000

Auto program settings
[+ Erase device before programming
I+ Verfy device after programming
[+ Send Exit after programming

[Erase Device] [Auto] [Send Exit]

EEPROM
|

| Program | | Vedy | | Read |

EEFROM Range
Start:

|00

End:
|00

[Userange

Found AVE ISF

Signature =

Leaving programming mode. . .
Checking programmer type - .-

Entering programming mode. . .
OxlE 0Ox54 0O=x03
Leaving programming mode . . .

www.researchdesignlab.com

Page 18

@ Research
Design Lab Atmega 16/32 Microcontroller

8. Browse your hex file where you have store
B i osn ==

Organize = Mew folder

Y Favorites Mame Date modified Type

B Desktop J dep 09-Oct-14 10:22 AM File folder

4 Downloads |i] serial 09-Oct-14 10:22 AM

1| Recent Places

- Libraries

& Apps

3 Documents
rJ"- Music

=] Pictures

E Videos

& Homegroup

File name: ~ | HexFile (".hex)

[Open l [Cancel

9. After clicking on program it will erase the previous content of the chip
and will flash the program on to the chip

www.researchdesignlab.com Page 19

Program l Fuse Bits] Lock Bits] Advanced] Corfigure] Help]

Device Auto program settings

|;’-‘-.Tmega'| B ﬂ futo Detect v Erase device before programming

[+ Verfy device after programming

16384
51z lv Send Exit after programming
128

0x1E 0x94 0x03

Flash size
EEProm size
Page size
Signature

[Erase Device] [Auto] [Send Exit]

FLASH EEPROM
|F:"-atmega"-pn:ugmms"-;:lefaul‘t"-seﬁ: |

[F‘rogmm] [Werify] [Fiead]

FLASH Range EEFROM Range
Start: End: Start: End:

™ Userange |00 (<00 ™ Userange |m00 |00

AEEENNNEENENNEENENNENENEEENEEEN
C ||Checking programmer type ...

L ||Found AVE ISP

R||Entering prograrmming mode. ..

Erasing chip contents. ..
E Beading HEX input £file for flash operations. ..
'

Programming Flash contents... 0x0000 TO O0x0OESB

www.researchdesignlab.com Page 20

@ Research
Design Lab Atmega 16/32 Microcontroller

10. After the completion of the flash it will compare the flash data if its
equal than it means that your flash is successful and it will show
(lEqua|11

Program l Fuse Bits] Lock Bits] Advanced] Corfigure] Help]

Device Auto program settings

|ATmega1] j Auto Detect ¥ Erase device before programming

[v Verfy device after programming

1&83E84

51z v Send Exit after programming

128

(s Oeeel MR [EIEISE Device] [Auto] [Send Exit l

Flash size
EEProm size
Pzge size
Signature

FLASH EEPROM
|F:"-atmega"-q:uroglams"-default"ﬁel‘i: |

l m [Proglam] [Verify l [Read]

FLASH Range EEPROM Range
Start: End: Start: End:

[Userange |00 |00 [Userange w00 |00

C||Reading HEX input file for f£lash operations. ..
L [|programming Flash contents... 0x0000 TO Ox0ESE
R

Beading Flash contents...0x0000 TO Ox0ESE

Comparing Flash data...-

C Egqual!
5 Leaving programming mode. . .

www.researchdesignlab.com Page 21

esearch
esign Lab

Atmega 16/32 Microcontroller

2. SINA PROG 2.1

e If You are using ISP_Atmega Programmer to Burn the code In Your Microcontroller than this
Programmer will surely come in handy

e |ts simple to use and You can easily use the Microcontroller For External Crystal Frequency

EEE— Browse your

Hex file Hex File
Click
program to
flash the
code

EEPROM

[Program | |

. Searchto

o Device

ATmegal6

Fuses

Int. 1MHz [+] [Program] [Advanced...]

Programmer

USBasp [«) | Default [w] |Default [w]

www.researchdesignlab.com Page 22

http://researchdesignlab.com/isp-atmega-programmer.html

esearch
esign Lab

Atmega 16/32 Microcontroller

e If You Want to Change Internal Frequency Or want To use External Crystal Frequency than You
can change the Fuse.

Hex file

Flash

[progam | [verify |[Read

To EEPROM

Set [Progam | [verfy ||
Fuses Device

ATmega1b

Int. 2 MHz
Int. 4MHz
Int. 8 MHz

e Here You Can Set Internal Frequency To

1. 1MHz
2. 2MHz
3. 4MHz
4. 8 MHz

e If You want to use External Frequency than select Ext.Crys.

(If Ext Crys Doesn’t work properly than Try changing the BC valve as shown in Below Pic)

www.researchdesignlab.com Page 23

Research
Design Lab

Atmega 16/32 Microcontroller

| Progam || verfy |[Read |

EEPROM

| Progam || verfy || Read |

Device
Kinesat =

Fuses

Int. 1MHz [v] [Program | [Advanced... |

Programmer

USBasp [+] | Default [+
\
BC 1.5 MHz
BC 750 KHz
BC375KHz ||
BC 187.5 KHz
BC 93.75 KHz
BC 32 KHz

BC 16 KHz

BC 8 KHz

e Usually For Atmega 16 it comes out to be BC 32 KHz and For Atmega 32 BC 16 KHz but try with
Other Valve if this Doesn’t Works.

www.researchdesignlab.com Page 24

: Research
Design Lab

INTERFACE

Atmega 16/32 Microcontroller

1. LED BLINKING

Here we are blinking the led making it on and off for a certain duration using

AT Mega 16

Circuit diagram:

xek/mo) peo 1
(T1) PB1 [Pl
anr2/aino) pe2 I3
(oco/ainy) pe3 [4
(ss)pea S
mosiyres [lile
(mosi)res [i§7
isckyre7 8
reser o

vee [0

ano 1

xtaz 12

xtan 13

(rx) poo fll14
(xpjep1 15
ntoyeoz [l16
unryeos 7
(ocie)epa |18
(ocia)pps 19
nce)eos 20

Pomzg >

. PAD (ADCO)
[rai(ancy)
B r22(2002)
B Prs(a0cs)
B r2a(20ca)
B ras(ancs)
B r2s(apce)
B rar(ancy)

B Arer
B e
B ~vcc

B rcrrosc2)

B rcs(roscyj

B rcsiro1)!

[l pcaoo
B PC3(TMS)—‘

[l Pcz(rck

B rcispa——

[l rco(sc—
[l ro7(0c2)

—— GND

www.researchdesignlab.com

@ Research

Program:

define F_CPU 1000000UL

#define FOSC 16000000L [Ihere we define the clock frequency
#include <avr/io.h>

#include <util/delay.h>

int main(void)

{
DDRB = 0xFF; //Makes PORTC as Output
While (1) [finfinite loop
{
PORTB = OxFF; [[Turns ON All LEDs
_delay_ms(1000); /11 second delay
PORTB= 0x00; [[Turns OFF All LEDs
_delay_ms(1000); /11 second delay
}
}

www.researchdesignlab.com Page 26

esearch
esign Lab

Atmega 16/32 Microcontroller

2 . LCD:
CIRCUIT DIAGRAM:
wm_i
1 n

| V) n

| E n

| n

| 4 2 n

| "]

| U E |-

5 =

 Ho 1 =

Hu]
;—4-”—-.12 . -—_
s 13 n

—14 "

s n

M5]

¥ n

s |

it B

20 I—‘

Program;

define F_CPU 1000000UL
#include <avr/io.h>
#include <util/delay.h>
#include <string.h>

//#define LCD_PORT PORTB
#define RS PCO [linitialize register select as PCO pin
#define EN PC1 [linitialize enable pin as PC1

www.researchdesignlab.com Page 27

@ ges?arch
esign Lab Atmega 16/32 Microcontroller

void CMD_WRT (unsigned char val)

{
PORTB=val;
PORTC = PORTC & (~(1<<RY));
_delay_ms(1); /1 here we provide a delay of 1 sec
ORTC =PORTC | ((1<<EN)); [/Imake enable pin high
_delay_ms(1);
PORTC = PORTC & (~(1<<EN)); //make enable pin low
}
void DATA_WRT (unsigned char ch)
{
PORTB = ch;
PORTC = PORTC | ((1<<RS));/[make register select pin high
_delay_ms(1);
PORTC = PORTC | ((1<<EN)); //make enable pin high
_delay_ms(1);
PORTC = PORTC & (~(1<<EN)); //make enable pin low
}
void LCD_WRT(char *string)
{
while(*string)
DATA_WRT(*string++);//will write the strings
}

int main(void)

{

[[setting the display of the Icd

www.researchdesignlab.com Page 28

Research
79 Design Lab

Atmega 16/32 Microcontroller

unsigned char CMD[]={0x38,0x01,0x0f,0x06,0x80} TEMP1,i;

DDRB=0XFF; /Imake PORTB as output
DDRC = OxFF;//(1<<RS)|(1<<EN); //make PORTC as output
_delay_ms(10); Ilprovide the delay of 10ms
for(i=0;i<5;i++)
{
TEMP1=CMDIi]; [fit will place the command in cmd array
CMD_WRT(TEMPL); /it will write all the cmd that is in the cmd array
}
while(1)
{

CMD_WRT(0X01); /lclear display

CMD_WRT(0X80); /1 blink the cursor in 1st row
LCD_WRT(" --RDL--");/ldisplay RDL in Icd
CMD_WRT(0XCO0); //touse 2nd row of led

LCD_WRT(" LCD_DISPLAY™); //display LCD_DISPLAY in led

_delay_ms(1000); /ldelay of 1sec

return O;

www.researchdesignlab.com Page 29

esearch
esign Lab

Atmega 16/32 Microcontroller

3. PULSE WIDTH MODULATION:

Program:

/I program to change brightness of an LED
/I demonstration of PWM

#include <avr/io.h>
#include <util/delay.h>

Il initialize PWM
void pwm_init()

{

// initialize timer0 in PWM mode
TCCRO |= (1<<WGMO00)|(1<<COMO01)|(1<<WGMO01)|(1<<CS00);

/I make sure to make OCO pin (pin PB3 for atmega32) as output pin
DDRB |= (1<<PB3);

k

void main()

{
uint8_t brightness;

// initialize timer0 in PWM mode
pwm_init();

/I run forever
while(1)
{
/I increasing brightness
for (brightness = 0; brightness < 255; ++brightness)

{

www.researchdesignlab.com Page 30

esearch
esign Lab

Atmega 16/32 Microcontroller

/] set the brightness as duty cycle
OCRO = brightness;

/I delay so as to make the user "see" the change in brightness
_delay_ms(10);
}

/I decreasing brightness
for (brightness = 255; brightness > 0; --brightness)
{

/1 set the brightness as duty cycle
OCRO = brightness;

/I delay so as to make the user "see" the change in brightness
_delay_ms(10);

/1 repeat this forever

¥
k

www.researchdesignlab.com Page 31

@ Research
Design Lab Atmega 16/32 Microcontroller

4. Apc:

Program;

define F_CPU 1000000UL
#include <avr/io.h>

#include <util/delay.h>
#include <string.h>
/[#include <iom16.h>

/l#define LCD_PORT PORTB

#define RS PCO /I connect register select pin to PCO
#define EN PC1 /I connect enable pin to PC1
#define LTHRES 500 [/setting the threshold valve
#define RTHRES 500

#include <stdlib.h>

void CMD_WRT (unsigned char val)
{

PORTB=val; /[initializing PORTB as input and passing valve onto it
PORTC = PORTC & (~(1<<RS));//make RS pin low
_delay_ms(1);

PORTC = PORTC | ((1<<EN));// make EN pin high

_delay_ms(1);

PORTC = PORTC & (~(1<<EN));// make EN pin low

www.researchdesignlab.com Page 32

@ Research
Design Lab Atmega 16/32 Microcontroller

void DATA_WRT (unsigned char ch)

{
PORTB = ch; //initializing PORTB as input and passing CMD onto it
PORTC = PORTC | ((1<<RS)); // make RS pin high
_delay_ms(1);
PORTC = PORTC | ((1<<EN));//make EN pin high
_delay_ms(1);
PORTC = PORTC & (~(1<<EN));// make EN pin low
}
void LCD_WRT(char *string)
{
while(*string)
DATA_WRT(*string++);
}

/[initialize adc
void adc_init()
{
Il AREF = AVcc
ADMUX = (1<<REFS0); [initialize admux

/I ADC Enable and prescaler of 128

// 16000000/128 = 125000

ADCSRA = (1<<ADEN)|(1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
} //ADEN means ADC enabled

/! read adc value
int adc_read(char ch)

www.researchdesignlab.com Page 33

Research
79 Design Lab

Atmega 16/32 Microcontroller

{
/1 select the corresponding channel 0~7
/I ANDing with '7* will always keep the value
/I of ‘ch’ between 0 and 7
ch &= 0b00000111; // AND operation with 7
ADMUX = (ADMUX & 0xF8)|ch; // clears the bottom 3 bits
before ORing
/1 start single conversion
/I write '1' to ADSC
ADCSRA |= (1<<ADSC);
/I wait for conversion to complete
/I ADSC becomes ‘0" again
/1 till then, run loop continuously
while(ADCSRA & (1<<ADSC));
return (ADC);
}

int main(void)
{
uintl6_t adc_resultO;//, adc_resultl;
char int_buffer[10]; /lcreating array of 10
unsigned char CMD[]={0x38,0x01,0x0f,0x06,0x80}, TEMPL,i;
DDRB=0XFF;//set port b as output
DDRC = OXFF;//(1<<RS)|(1<<EN);
_delay_ms(10);

for(i=0:i<5;i++)

{

www.researchdesignlab.com Page 34

@ Research
Design Lab Atmega 16/32 Microcontroller

TEMP1=CMDIi]; /lfor each one cycle each command will be placed in
that cmd array

CMD_WRT(TEMPL);

}
adc_init();

while(1)

{
/ladc_resultO = adc_read(0); // read adc value at PAO
adc_resultO = adc_read(1);
itoa(adc_resultO, int_buffer,10);
CMD_WRT(0X01); /lclear display
CMD_WRT(0X80); I/ cursor on first line
LCD WRT(" --RDL--"); /ldisplay RDL
CMD_WRT(0XCO0); [lcursor on next line
LCD_WRT(int_buffer);
_delay_ms(1000);
/[TODO:: Please write your application code

b

return O;

www.researchdesignlab.com Page 35

\ Research
Design Lab
5.

Block diagram:

Atmega 16/32 Microcontroller

KEYPAD:

ATmega
16

PDO

PD7

PCO

www.researchdesignlab.com

LCD

PC7

4*4
keypad

Page 36

@ Research
Design Lab Atmega 16/32 Microcontroller

Program:

#include<avr/io.h>
#include <avr/keypad.h> /1 to initialize the keypad

#define F_CPU 1000000UL
#include <util/delay.h> //header to use delay function

#define KEYPAD_PORT PORTC /I connecting keypad to port ¢
#define KEYPAD _PIN PINC [linitializing pins for keypad

#define LCD_DATA_PORT PORTB
#define LCD_CONT_PORT PORTD

#define LCD_RS PDO
#define LCD_RW PD1
#define LCD_EN PD2
#include <lcd.h> [Iheader to initialize LCD commands

void main(void)

{
DDRB=0xFF; /Imake PORTB as output
DDRD=0X07; {Imake PORTD pin 0, 1, 2 as output
DDRB=0XO0F;
PORTC=0xFF; [/Imake PORTC as output
unsigned char keypad_valve;
lcd_init();

while(1)

{

Icd_command_write(0x08); //display off cursor off
Icd_string_write("PRESS ANY KEY");
Icd_command_write(0xc0);//2nd line display
keypad_valve=read_ keypad();

www.researchdesignlab.com Page 37

Research
79 Design Lab

Atmega 16/32 Microcontroller

if(keypad_valve!=0xFF)

{
Icd_number_write(keypad_valve,10);//if key is pressed corresponding
valve will be displayed
lcd_data write(' *);
b
else
_delay_ms(300);
¥
b

www.researchdesignlab.com Page 38

@ Resg.-arch
Design Lab Atmega 16/32 Microcontroller

SERIAL COMMUNICATION:

What is the USART?
The vast majority of devices in the current AVR family lineup contain a
USART hardware subsystem. The USART hardware allows the AVR to
transmit and receive data serially to and from other devices - such as a
computer or another AVR.

The USART transmission system differs to most other digital busses in that
it does not utilize a separate pin for the serial clock. An agreed clock rate is
preset into both devices, which is then used to sample the Rx/Tx lines at
regular intervals. Because of this, the USART requires only three wires for
bi-directional communication (Rx, Tx and GND).

Setting up the Hardware

e Connect your USART to a computer via the Com port.

e You need to first identify which pins of your AVR(ATmega 16) are
responsible for serial communication.

e For ATmega 16 Pin 14 and Pin 15 are used for receiving and
transmission.

e Connect tx pin of usart to rx pin of ATmega 16 and rx pin of usart to
the tx pin of the ATmega 16 .

e Now to see the transmitted word back in pc you need to use
HyperTerminal (it’s a free software you need to download it)

¢ set the Baud rate in the HyperTerminal

www.researchdesignlab.com Page 39

Research
Design Lab

Atmega 16/32 Microcontroller

Setting up HyperTerminal

1. open the HyperTerminal

Connection C

Enter a name and choose an icon for the connection:

Mame:

lcon:

2. Add name here | have added serial

Connection C

Enter a name and choose an icon for the connection:

Mame:

www.researchdesignlab.com Page 40

esearch
esign Lab

Atmega 16/32 Microcontroller

3. Select your com port which you are using and press oK (to check

the com port go to device manger and check in which com port is the usart connected)

Enter detzils for the phone number that you want to dial:

Country/fregion: |L.|nited States (1) j

Enter the area code without the lang-distance prefix.

Area code: 12344

Phone number: |

Connect using: |513ndard Modem over Bluetooth Iﬂ

v Use country|Tcp/IP (Winsodk)
[Redial on bugTcr/IP (S5H)

4. select the baud rate that you have set or just click Restore
default it will set the default valve and press ok

www.researchdesignlab.com Page 41

Research
Design Lab

Atmega 16/32 Microcontroller

Port Settings l

Bits per second:

Diata bits:

Parity

Stop bits:

Flow control

Restore Defaults |

Cancel |

File Edit View Call Transfer Help
0= & =0 B

www.researchdesignlab.com Page 42

@ Resg.-arch
Design Lab Atmega 16/32 Microcontroller

Initializing the USART

First off, you need to enable both the USART's transmission and
reception circuitry. For the MEGALG6, these are bits named RXEN and TXEN, and
they are located in the control register UCSRB. When set, these two bits turn on
the serial buffers to allow for serial communications

Code:

int main (void)

UCSRB = (1 << RXEN) | (1 << TXEN); // Turn on the transmission and reception circuitry

Next, we need to tell the AVR what type of serial format we're using.
Looking again at the MEGA16 datasheet, we can see that the bits responsible for
the serial format are named UCSZ0 to UCSZ2, and are located in the USART
control register C named UCSRC.

Code:

UCSRC = (1 << URSEL) | (1 << UCSZO) | (1 << UCSZ1); // Use 8-bit character sizes - URSEL bit
set to select the UCRSC register

The last thing to set for basic serial communications is the baud rate
register. The baud rate register is 16-bit, split into two 8-bit registers as is the case
with all 16-bit registers in the AVR device family. For this the baud valve need to
be found for that we have a formula

BaudValue = (((F_CPU / (USART_BAUDRATE * 16))) - 1)

Where F_CPU is your AVR's system clock frequency (in Hz), and USART_BAUDRATE is the desired
communication baud rate.

Given my example project using a system clock of 7372800Hz and a baud rate of 9600, our formula
gives:

www.researchdesignlab.com Page 43

@ Resgarch
Design Lab Atmega 16/32 Microcontroller

BaudValue = (((F_CPU / (USART_BAUDRATE * 16UL))) - 1) BaudValue = (7372800 / (9600 * 16) - 1)
BaudValue = (7372800 / 153600 - 1)

BaudValue = (48 - 1)

BaudValue = 47

This avoids "magic numbers" (unexplained constants) in our source code,
and makes changing the baud rate later on very easy - just change the
BAUD_RATE macro value. Now, we need to load this into the baud rate registers,
named UBRRH (for the high byte) and UBRRL (for the low byte). This is simple
via a simple bit shift to grab the upper eight bits of the BAUD_PRESCALE
constant:

UBRRH = (BAUD_PRESCALE >> 8); // Load upper 8-bits of the baud rate value into the high byte
of the UBRR register

UBRRL = BAUD_PRESCALE; // Load lower 8-bits of the baud rate value into the low byte of the
UBRR register

Sending and receiving data

We do this by the special register named UDR - short for "USART 1/0O
Data Register”. On the MEGALG, the Transmission Complete flag is located in the
control register UCSRA, and it is named TXC. Using this information we can
construct a simple wait loop which will prevent data from being written to the
UDR register until the current transmission is complete.

UDR = ByteToSend; // Send out the byte value in the variable "ByteToSend"

while ((UCSRA & (1 << TXC)) == @) {}; // Do nothing until transmission complete flag set

However this is non-optimal. We spend time waiting after each byte which
could be better spent performing other tasks - better to check before a transmission
to see if the UDR register is ready for data. We can do this by checking the
USART Data Register Empty flag instead (called UDRE), also located in the
UCSRA control register of the MEGA16

www.researchdesignlab.com Page 44

@ Resg.-arch
Design Lab Atmega 16/32 Microcontroller

while ((UCSRA & (1 << UDRE)) == @) {}; // Do nothing until UDR is ready for more data to be
written to it

UDR = ByteToSend; // Send out the byte value in the variable "ByteToSend"

Now we can move on to receiving data. we need to check to see if we have
received a byte.
To do this, we can check the USART Receive Complete (RXC) flag to see if it is
set. Again, this is located in the UCSRA control register of the MEGAL16:

while ((UCSRA & (1 << RXC)) == 0) {}; // Do nothing until data have been received and is ready
to be read from UDR

ReceivedByte = UDR; // Fetch the received byte value into the variable "ReceivedByte"

CODE:

#include <avr/io.h>
#include <avr/delay.h>
#define F_CPU ((unsigned long)8000000)

#tdefine F_0OSC 8000000// for 8mhz

#define USART_BAUDRATE 9600

#define BAUD_PRESCALE (((F_CPU / (USART_BAUDRATE * 16UL))) - 1)

unsigned char

int main (void)
e

www.researchdesignlab.com Page 45

@ Resg.-arch
Design Lab Atmega 16/32 Microcontroller

{

char ReceivedByte;

UCSRB = (1 << RXEN) | (1 << TXEN); // Turn on the transmission and reception
circuitry

UCSRC = (1 << URSEL) | (1 << UCSZ®) | (1 << UCSZ1); // Use 8-bit character sizes

UBRRH = (BAUD_PRESCALE >> 8); // Load upper 8-bits of the baud rate value into the
high byte of the UBRR register

UBRRL = BAUD_PRESCALE; // Load lower 8-bits of the baud rate value into the low byte
of the UBRR register

for (;;) // Loop forever

while ((UCSRA & (1 << RXC)) == @) {}; // Do nothing until data have been
received and is ready to be read from UDR

ReceivedByte = UDR; // Fetch the received byte value into the variable
"ByteReceived"

//_delay_ms(1000);

while ((UCSRA & (1 << UDRE)) == @) {}; // Do nothing until UDR is ready for
more data to be written to it

UDR = ReceivedByte; // Echo back the received byte back to the computer

www.researchdesignlab.com Page 46

@ gesrarih
esign Lab Atmega 16/32 Microcontroller

Related Products:

Atmega 16/32/64 Project Board Atmega 16/32/64 Development Board-USB

Product Code: G89S52 Product Code: ATM-U

Atmega Programmer-USB ISP Atmel Programmer

Product Code: AVR Product Code: UAB

www.researchdesignlab.com Page 47

http://researchdesignlab.com/development-baord/avr-and-atmega/atmega-development-board-usb.html
http://researchdesignlab.com/development-baord/avr-and-atmega/atmega16-project-board.html
http://researchdesignlab.com/development-baord/avr-and-atmega/atmega-development-board-usb.html
http://researchdesignlab.com/development-baord/avr-and-atmega/atmega-programmer-usb.html
http://researchdesignlab.com/development-baord/atmel/atmel-atmega-programmer.html

Atmega Development Board

hione)

}?itlltnni\\. “’m
Breperpamnt ¢ :
¥

Research
Design Lab

www.researchdesignlab.com

Email: sales@researchdesignlab.com | www.researchdesignlab.com
An I1SO 9001- 2008 Certified Company

:
L
;

wasre parchorsh Mlabcos

| §iiif) sasssa)

e B TR
v mm .-

1. Power supply, 5V-12V 15. DB-9 female connector
2. 40 pin ZIF socket for IC mount. 16. 8x1 LED's

3. ISP connector* 17. 8 way DIP switch

4. Reset 18. RTC Module

5. Node connector 19. EEPROM

6. 4x1 7 segment display 20. 2x5x2 jumper node.

7. 26 pin raspberry connector 21. DC 5V connectors

8. Arduino Shield footprint 22. Analog to Digital output
9. ULN 2803 driver 23. 4x1 keypad

10. 12C bus 24. 16x2 LCD connectors
11. SPI bus 25. Node connector

12. XBEE footprint/XBEE Adaptor module 26. 4x4 Matrix Keypad

13. FT232 breakout board connector 27. DC 12V connectors

14. DC 3.3V connectors 28. Power ON switch

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

Power supply, 5V-12V

All digital circuits require regulated power supply. Here is
a simple power supply circuit diagram used on this board.
You can use AC or DC source (12V) which converts into
regulated 5V which is required for driving the
development board circuit.

U$3
HEATSINKR_HOLE

1. 40 pin ZIF socket for IC mount & ISP connector*
Select the IC's from the given list and mount on the ZIF socket. ZIF socket pin maps out PORT1

PORT2 PORT3 PORT4 for easy making connections for the rest of the circuit. Port 1 is enabled with
pull up circuit and also connected ISP for easy on board Programming.

| JP18

> /AN
- JP15 p 4
zlma:‘; 2 | ~d 1B0 AQj40 1o le2
SND T~ p=¥ 2B1 A1jae 2518
10u 2 n g iB2 AZA38 35 g,
[b 4B3 A7 451,68
0 O 5B4 Adl3E D4 ME
20 % 6Bs Mosiadas | ex1.s 3
S 5 8 154 7B6 MISO Ag: D ME x
. p=i] 8B7 SCK A7Na3 Eoled—élL
15 TIP% o 9RST AREHA22 s] e
10ksvy GNDJ3!]
2e UEND +5Vf30JP17
2 PCTI22 -l il —
Jp ' PCH28 b IR
o tRx pCH2T ko d I -
p=ei 151X PC42¢ % [
= P 168p2 PC325 £ &
< o : A o1
,_|RST o6 7p3 pCA24 o2 I
5 18 23 8
o S T S o P 4
o4 B& =t 1905 PCO22 o=
ol BA / 2008 21
O/‘ +8\Y o) %
1 Il e EE2
O GND " f 0
ISP J7TMM O
k4N

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

2. Reset 5 3. Node connector

Resets your microcontroller : Node connector is an additional on board
: connection extender or 1 connection

IN and 1 connection OUT

13

2 C\é 14RX

J=HEH =

£ 1 S 162

) RST @ 5 r“; 1703

5 | R7 B | =5 1804

O'_:_ E: > §| 1905

Of-i Bs5 8 1 ~J 2006
2 +5VY G xﬁ
1 A A

Qi Teno u:

4. 4 digit 7 segment display

One seven segment digit consist of 7+1 LEDs which are arranged in a specific formation which
can be used to represent digits from 0 to 9 and even some letters. One additional LED is used for
marking the decimal dot, in case you want to write a decimal point in the desired segment.

JP30

BRI

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

5. 26 pin Raspberry Pi connector . 6. Arduino Shield footprint

26 Pin Raspberry Pi connector is an easy way Arduino Shield footprint is provided in the
for making connections with Raspberry Pi : board to mount different types of Arduino
along with this development board. : compatible shields on this development board.

235
< Y
[s
as

=
Eo
e
Lt g
::G
Qo
=
4y
L o
> W
o
"

JPTOIP20 _ JP2TIP22
- 12| [=R
Raspberry Pi Oa—jo 0_3__50
o e 34 4: 4 4C
oM = S Tomein S 1:3| |3=8
2 - -2 1 o1—=20| |031-=20
1 26 26 9 Qe 13291 195 T£9
1 -~ - 7 Oos éoo O O
1 — = 5 10 | 10 P23
1: +4 T 3 O 1 O| o1 ez
Y 5 JPZ20JPZ26 2 1
1 t 2 11 O=—F—20
5 b ol41lol |02+4-20
= = : 2 2 4 3
6 6 O 121 19 T1=0
2 2 6 6Q Oal O
O O Arduino
P8 JP3

7. ULN 2803 driver

IC ULN2803 consists of octal high voltage, high current darlington transistor arrays. The eight NPN
Darlington connected transistors in this family of arrays are ideally suited for interfacing between
low logic level digital circuitry (such as TTL, CMOS or PMOS/NMOS) and the higher
current/voltage requirements of lamps, relays, printer hammers or other similar loads for a
broad range of computer, industrial, and consumer applications.

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

Features

« Eight Darlingtons with Common Emitter.

» Open-collector outputs.

» Free wheeling clamp diodes for
transient suppression.

e Output Current to 500 mA.

« Output Voltage to 50 V.

« Inputs pinned opposite outputs to
simplify board layout.

¢
2.7K : a1

7.2K

E
|]
3.0K
AN

Case 2: When INis 5 volts.

S

Working

The ULN 2803 IC consists of eight NPN
Darlington connected transistors (often
called a Darlington pair). Darlington pair
consists of two bipolar transistors such
that the current amplified by the first is
amplified further by the second to get a
high current gain B or hFE. The figure
shown below is one of the eight Darlington
pairs of ULN 2803 IC.

Now 2 cases arise:-

Case 1: When INis O volts.

Q1 and Q2 both will not conduct as there is
no base current provided to them. Thus,
nothing will appear at the output (OUT).

Input current will increase and both transistors Q1 and Q2 will begin to conduct. Now, input
current of Q2 is combination of input current and emitter current of Q1, so Q2 will conduct more
than Q1 resulting in higher current gain which is very much required to meet the higher current
requirements of devices like motors, relays etc. Output current flows through Q2 providing a
path (sink) to ground for the external circuit that the output is applied to. Thus, when a 5V input
is applied to any of the input pins (1 to 8), output voltage at corresponding output pin (11 to 18)
drops down to zero providing GND for the external circuit. Thus, the external circuit gets
grounded at one end while it is provided +Vcc at its other end. So, the circuit gets completed and

starts operating.

.

ND
C
8
o3P
3
'8
4
3
2
T

JP38 | L& JFD

C" B| D1 1 18 1
02 1N 4% 1,1 8; 17 28
O.’j ~g D& 1814 4% 03 16 BO
o g | o os 5145
CG ey 1{#;% . 06 13 60
Ol DF 1K4)4 o7 IH2} 18
ot 7| 1[1.;&11@ g 08 11 88

g 1814} 4 N 10 g
O | ND CD mo
O

ULN

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1

WWW.RESEARCHDESIGNLAB.COM

8. 12C bus

One IC that wants to communicate to another must: (Protocol)

1) Waituntilit sees no activity on the I2C bus. SDAand SCL are both high. The busis 'free'.

2) Put amessage on the bus that says 'its mine’ - | have STARTED to use the bus. All other ICs then
LISTEN to the bus data to see whether they might be the one who will be called up
(addressed).

3) Provide on the CLOCK (SCL) wire a clock signal. It will be used by all the ICs as the reference
time at which each bit of DATA on the data (SDA) wire will be correct (valid) and can be used.
The data on the data wire (SDA) must be valid at the time the clock wire (SCL) switches from
‘low’' to 'high’ voltage.

4) Put out in serial form the unique binary 'address'(name) of the IC that it wants to
communicate with.

5) Put a message (one bit) on the bus telling whether it wants to SEND or RECEIVE data from the
other chip. (The read/write wire is gone!)

6) Ask the other IC to ACKNOWLEDGE (using one bit) that it recognized its address and is ready to
communicate.

7) After the other IC acknowledges all is OK, data can be transferred.

8) The first IC sends or receives as many 8-bit words of data as it wants. After every 8-bit data
word the sending IC expects the receiving IC to acknowledge the transfer is going OK.

9) When all the data is finished the first chip must free up the bus and it does that by a special
message called 'STOP'. It is just one bit of information transferred by a special 'wiggling' of the
SDA/SCLwires of the bus.

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

9. SPI bus

Serial to Peripheral Interface (SPI) is a hardware/firmware communications protocol developed
by Motorola and later adopted by others in the industry. Microwire of National Semiconductor is
same as SPI. Sometimes SPI is also called a "four wire" serial bus.

The Serial Peripheral Interface or SPI-bus is a simple 4-wire serial communications interface used
by many microprocessor/microcontroller peripheral chips that enables the controllers and
peripheral devices to communicate each other. Even though it is developed primarily for the
communication between host processor and peripherals, a connection of two processors via SPI is
just as well possible.

The SPI bus, which operates at full duplex (means, signals carrying data can go in both directions
simultaneously), is a synchronous type data link setup with a Master / Slave interface and can
support up to 1 megabaud or 10Mbps of speed. Both single-master and multi-master protocols are
possible in SPI. But the multi-master bus is rarely used and look awkward, and are usually limited
toasingleslave.

The SPI Bus is usually used only on the PCB. There are many facts, which prevent us from using it
outside the PCB area. The SPI Bus was designed to transfer data between various IC chips, at very
high speeds. Due to this high-speed aspect, the bus lines cannot be too long, because their
reactance increases too much, and the Bus becomes unusable. However, its possible to use the SPI
Bus outside the PCB at low speeds, but this is not quite practical.

The peripherals can be a Real Time Clocks, converters like ADC and DAC, memory modules like
EEPROM and FLASH, sensors like temperature sensors and pressure sensors, or some other devices
like signal-mixer, potentiometer, LCD controller, UART, CAN controller, USB controller and
amplifier.

ST

SPI

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

10. XBEE footprint/ XBEE Adaptor module

All XBeeZNet 2.5 modules can be identified by their unique 64-bit addresses or a user-
configurable ASCII string identifier The 64-bit address of a module can be read using the SH and SL
commands. The ASCII string identifier is configured using the NI command.

To transmit using device addressing, only the destination address must be configured. The
destination address can be specified using either the destination device's 64-bit address or its NI-
string. The XBee modules also support coordinator and broadcast addressing modes. Device
addressing in the AT firmware is configured using the DL, DH, or DN commands. In the API
firmware, the ZigBee Transmit Request APl frame (0x10) can be used to specify destination
addresses.

To address a node by its 64-bit address, the destination address must be set to match the 64-bit
address of the remote. In the AT firmware, the DH and DL commands set the destination 64-bit
address. In the API firmware, the destination 64-bit address is set in the ZigBee Transmit Request
frame. ZigBee end devices rely on a parent (router or coordinator) to remain awake and receive
any data packets destined for the end device. When the end device wakes from sleep, it sends a
transmission (poll request) to its parent asking if the parent has received any RF data destined for
the end device. The parent, upon receipt of the poll request, will send an RF response and the
buffered data (if present). If the parent has no data for the end device, the end device may return
to sleep, depending on its sleep mode configuration settings. The following figure demonstrates
how the end device uses polling to receive RF data through its parent.

iE XBEE
- j}_

*—

QRREQLQQQ0 f

| 5655886555

o
N
&

T

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

11. Ft232 breakout
board connector

A standard FT232
breakout board from
researchdesignlab.com
could be used to interface
on these connectors,
whose other end is
connected to a USB.

12. DC 3.3V connectors

These connectors provide on board
3.3V DC connections.

13. DB-9 female connector

RS-232 is a standard communication protocol for linking computer and its peripheral devices to
allow serial data exchange. In simple terms R5232 defines the voltage for the path used for data
exchange between the devices. It specifies common voltage and signal level, common pin wire
configuration and minimum, amount of control signals.

. 5
e J, mi

. . | 'T'
—t

. L o —
T RX Lous | .

L L J L MRLALL TIoU

b |

Serial

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

14. 8x1 LED's

L1
[|
LED's are used to indicate ™
something, whether any pin is high Hu
or indicating the output for many b
purposes like indicating /0 status - S ’ :
or program debugging running 8_,_ » A=—=L
state. We have 8 led outputs on o B Z
board which can be used by the Sa b ;
programmer as per the requirement 8_ L%—J 5
for testing and development. o L6 2
sl
PB " B e
L7 GN[
Bt
EXY
MLB 8LED
W

15. 8 way DIP switch

DIP switches are an alternative to jumper blocks. Their main advantages are that they are
quicker to change and there are no parts on lose.

_SMITCH i 2
-2 -
g o —
™ - o I
et SHEF
o - RIH= |
o -] £

~ -
0 -

8Switch

16. RTC Module

The DS1307 Serial Real Time Clock is a low power, full BCD clock/calendar plus 56 bytes of
nonvolatile SRAM. Address and data are transferred serially via a 2-wire bi-directional bus. The
clock/calendar provides seconds, minutes, hours, day, date, month, and year information. The
end of the month date is automatically adjusted for months with less than 31 days, including
corrections for leap year. The clock operates in either the 24-hour or 12-hour format with AM/PM
indicator. The DS1307 has a built-in power sense circuit which detects power failures and
automatically switches to the battery supply.

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

Operation

The DS1307 operates as a slave device on the serial bus. Access is obtained by implementing a
START condition and providing a device identification code followed by a register address.
Subsequent registers can be accessed sequentially until a STOP condition is executed. When VCC
falls below 1.25 x VBAT the device terminates an access in progress and resets the device address
counter. Inputs to the device will not be recognized at this time to prevent erroneous data from
being written to the device from an out of tolerance system. When VCC falls below VBAT the
device switches into a low current battery backup mode. Upon power up, the device switches
from battery to VCC when VCC is greater than VBAT +0.2V and recognizes inputs.

Features:
1. 56 byte nonvolatile RAM for data storage
2. 2-wire serial interface
3. Programmable square wave output signal
4. Automatic power-fail detect and switch circuitry
5. Consumes less than 500 nA in battery backup mode with oscillator running
6. Optional industrial temperature range -40°C to +85°C
7. Available in 8-pin DIP or SOIC
8. Recognized by Underwriters Laboratory
PIN ASSIGNMENT
PIN DESCRIPTION
1. VCC - Primary Power Supply x1g! ™~ 80 Vee
2. X1, X2 - 32.768 kHz Crystal X202 7 [Q3sawiouT
Connection Var 3 6 [OscL
3. VBAT - +3V Battery Input GNDOj4 S ISDA
4. GND - Ground DS1307 B-Pin DIP (300 mil)
5. SDA - Serial Data
6. SCL - Serial Clock ximl 8 o Vee
7. SQW/OUT - Square X2 il 2 7 D sQwW/oUT
wave/Output Driver varmls & hmscL
GND |4 s [MsSDA

DS1307Z 8-Pin SOIC (150 mil)

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

17. EEPROM

IC, EEPROM 12C 4K, 24C04, DIP8
Memory Size: 4Kbit

Memory Configuration: 512 x 8
Interface Type: 12C, Serial

Clock Frequency: 400kHz

Supply Voltage Range: 2.5V to 5.5V
Memory Case Style: DIP

No. of Pins: 8

Operating Temperature Range: -40°C to
+85°C

SVHC: No SVHC (19-Dec-2011)

Base Number: 24

Device Marking: M24C04

- AN IC Generic Number: 24C04
T o Interface: 12C
P13 Bk7 VCC Interface Type: Serial, 12C
o3 R Logic Function Number: 24C04
(:}iJ Lt,] SCL 4 Memory Configuration: 512 x 8
O WP 1| Memory Size: 4Kbit
GND 3 Az—: 8 3 Memory Type: EEPROM
ND2| »q_| E-J E Memory Voltage Vcc: 2.5V
GND 1 g | |W Operating Temperature Max: +85°C
GND Operating Temperature Min: -40°C
Package / Case: DIP
24AA08P
i Supply Voltage Max: 5.5V
EEPROM GND Supply Voltage Min: 2.5V
Termination Type: Through Hole
Voltage Vcc: 2.5V

18. 2x5x2 jumper node

Node connector is an additional on board connection
extender or 1 connection IN and 1 connection OUT

. JP10 P23

o=
O 0O

fome

00

ETHERNET

P

N
O

QR

P | |H
CIBJE H

O
(X

o
U

-

b

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

19. DC 5V connectors

These connectors provide on board 5V
DC connections.

20. Potentiometer

The Potentiometer Option allows the user to adjust the voltage reference by rotating a
potentiometers dial. Turning the potentiometer changes the voltage reference making it easier
to adjust the motor speed and also to set the duty cycle for PWM values (via programming).

> /ANVR2 > ANVR3 > /AN\VR4
Tp] g Tp]
+ 11—93 + 11—93 ;* 11—93
2 N GND © GND
N
e
S| OO

21.4x1 keypad

Switches are mainly used to
switch the controls of a
module. We have four
switches on board which can
be used by the programmer
as per the requirement for
testing and development.

4 Switch

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

22. 16x2 LCD connectors

LCD screen consists of two lines with 16 characters each. Each character consists of 5x7 dot
matrix. Contrast on display depends on the power supply voltage and whether messages are
displayed in one or two lines. For that reason, variable voltage 0-Vdd is applied on pin marked as
Vee. Trimmer potentiometer is usually used for that purpose. Some versions of displays have built
in backlight (blue or green diodes). When used during operating, a resistor for current limitation
should be used (like with any LE diode). LCD Connection Depending on how many lines are used for
connection to the microcontroller, there are 8-bit and 4-bit LCD modes. The appropriate mode is
determined at the beginning of the process in a phase called “initialization”. In the first case, the
data are transferred through outputs DO-D7 as it has been already explained. In case of 4-bit LED
mode, for the sake of saving valuable I/0 pins of the microcontroller, there are only 4 higher bits
(D4-D7) used for communication, while other may be left unconnected.

Consequently, each data is sent to LCD in two steps: four higher bits are sent first (that normally
would be sent through lines D4-D7), four lower bits are sent afterwards. With the help of
initialization, LCD will correctly connect and interpret each data received. Besides, with regards
to the fact that data are rarely read from LCD (data mainly are transferred from microcontroller
to LCD) one more I/0 pin may be saved by simple connecting R/W pin to the Ground. Such saving
has its price. Even though message displaying will be normally performed, it will not be possible
toread from busy flag since it is not possible to read from display.

Features:

1. Can display 224 different symbols.

2. Low power consumption.

3. 5x7 dot matrix format.

4. Powerful command set and user produced characters.

FEEEEESESESEEFE S

Q@ +5V
10K Contrast
LCD Backlight

Fig: Circuit connections of LCD

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

Pin Description

1. Gnd:- Power supply ground 4. R/W:- Read/Write pin
2. VCC:-+5v Power supply input 5. En:-Enable pin

3. RS:- Register Select 6. DO-D7:- Data lines
VR1
13
Qmwﬁ% +5\/ LCD
JPR
O o ono W2
O= 3 VCC @)
C}j -] CONTR
O= 4 RS o
OL‘ A R/W &
C}* (3] E ;
O 3| o0 S
O- = D1 o
G 9 2] i
Qo9 22 9|
11 11 3 O é
0‘2 7] D4 = -
: 5 I
O3 13| D 4
014 14 D6 0]
' D7 X
815 +5V 15| yo S
16 | GNDI6| oo -
) NC

23. Node connector

Node connector is an additional on board connection extender or 1 connection IN and 1
connection OUT

>
L o
-
Q.
o
—4
o
o
o
-4

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

24, 4x4 Matrix Keypad

In a 4x4 matrix keypad eight Input/Output ports are used for interfacing with any
microcontrollers. Rows are connected to Peripheral Input/Output (PIO) pins configured as
output. Columns are connected to PIO pins configured as input with interrupts.

FEATURES

1. Contact debouncing.

2. Easy to interface. PIN DETAILS

3. Interfaces to any microcontroller or microprocessor. pin 1-4: RO-R3:- Rows

4. Data valid output signal for interrupt activation. pin 5-8: C0-C3:- Columns

et s

o |~ oo

Ldr

14—g e e
e T e
Key Pad

25. DC 12V connectors

These connectors provide on
board 12V DC connections.

Programming Codes:

o LED BLINK « RTC

http://researchdesignlab.com/8051-i/0-code http://researchdesignlab.com/8051-rtc-code

« LCD « EEPROM
http://researchdesignlab.com/8051-lcd-code http://researchdesignlab.com/8051-eeprom-code

» KEYPAD « ADC

http://researchdesignlab.com/8051-keypad-code http://researchdesignlab.com/8051-adc-code.html

« UART « 7 Segment Display
http://researchdesignlab.com/8051-uart-code http://researchdesignlab.com/7-segment-atmel-code.html

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

	BOOKPDF.pdf (p.1-48)
	OVERVIEW:
	PORTS:

	PIN DESCRIPTION:
	WRITING THE CODE
	1. AVR STUDIO

	BURNING THE CODE
	1. AVR osp-2
	2. SINA PROG 2.1

	INTERFACE
	SERIAL COMMUNICATION:
	What is the USART?
	Setting up the Hardware
	Setting up HyperTerminal
	Initializing the USART
	Sending and receiving data
	CODE:

	Atmega Development Board.pdf (p.49-65)

