

2014

INTRODUCTION TO AVR

GETTING STARTED WITH

1. AVR STUDIO

2. AVR OSP

3. SINA PROG

INTERFACING

1. LCD,KEYPAD

2. ADC,I2C,SERIAL,PWM

ATMEGA DEVELOPMENT BOARD

Programming With AVR
Microcontroller

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 1

ATMEGA 16/32
MICROCONTROLLER

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 2

Table of Contents

OVERVIEW: .. 3

PORTS: ... 3

PIN DESCRIPTION: .. 5

WRITING THE CODE ... 7

1. AVR STUDIO .. 7

BURNING THE CODE ... 14

1. AVR osp-2 .. 14

2. SINA PROG 2.1 ... 22

INTERFACE ... 25

1. LED BLINKING .. 25

2. LCD .. 27

3. PULSE WIDTH MODULATION ... 30

4. ADC ... 32

5. KEYPAD ... 36

SERIAL COMMUNICATION: ... 39

What is the USART? ... 39

Setting up the Hardware .. 39

Setting up HyperTerminal .. 40

Initializing the USART... 43

Sending and receiving data .. 44

CODE: .. 45

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 3

OVERVIEW:
ATmega16 is an 8-bit high performance microcontroller of Atmel’s Mega AVR
family with low power consumption. Atmega16 is based on enhanced RISC
architecture with 131 powerful instructions. Most of the instructions execute in one
machine cycle. Atmega16 can work on a maximum frequency of 16MHz.

PORTS:
There are 32 I/O (Input/Output) pins grouped as A, B, C & D with 8 pins in each
group. This group is called as PORT.

PA0 - PA7 (PORTA)

PB0 - PB7 (PORTB)

 PC0 - PC7 (PORTC)

PD0 - PD7 (PORTD)

These are additional function that pin can perform other

than I/O. Some of them are.

• ADC (ADC0 - ADC7 on PORTA)

• UART (Rx,Tx on PORTD)

• TIMERS (OC0 - OC2)

• SPI (MISO, MOSI, SCK on PORTB)

• External Interrupts (INT0 - INT2)

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 4

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 5

PIN DESCRIPTION:
• VCC: Digital supply voltage. (+5V)
• GND: Ground. (0 V) Note there are 2 ground Pins.
• Port A (PA7 - PA0)

Port A serves as the analog inputs to the A/D Converter. Port A also serves
as an 8-bit bi-directional I/O port, if the A/D Converter is not used. When
pins PA0 to PA7 are used as inputs and are externally pulled low, they will
source current if the internal pull-up resistors are activated. The Port A pins
are tri-stated when a reset condition becomes active, even if the clock is not
running.

• Port B (PB7 - PB0)

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors
(selected for each bit). Port B also serves the functions of various special
features of the ATmega16 as listed on page 58 of datasheet.

• Port C (PC7 - PC0)

Port C is an 8-bit bi-directional I/O port with internal pull-up resistors
(selected for each bit). Port C also serves the functions of the JTAG
interface and other special features of the ATmega16 as listed on page 61 of
datasheet. If the JTAG interface is enabled, the pull-up resistors on pins
PC5 (TDI), PC3 (TMS) and PC2 (TCK) will be activated even if a reset
occurs.

• Port D (PD7 - PD0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors
(selected for each bit). Port D also serves the functions of various special
features of the ATmega16 as listed on page 63 of datasheet.

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 6

• RESET: Reset Input. A low level on this pin for longer than the
minimum pulse length will generate a reset, even if the clock is not
running.

• XTAL1: External oscillator pin 1

• XTAL2: External oscillator pin 2

• AVCC: AVCC is the supply voltage pin for Port A and the A/D
Converter. It should be externally connected to VCC, even if the
ADC is not used. If the ADC is used, it should be connected to VCC
through a low-pass filter.

• AREF: AREF is the analog reference pin for the A/D Converter.

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 7

WRITING THE CODE

1. AVR STUDIO

Setup:

1. open AVR studio 4

2. click new project

3. Select AVR GCC as we would be doing program in c and enter the
project name.

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 8

4. Add your project name. Here I have given my project name as serial and
it will automatically create your initial file name in .c format

5. click on next

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 9

6. Select AVR simulator in debug platform and in the Device select the
Device your using as here I am using ATmega 16 i have selected that.(for

Atmega 32 select Atmega 32).

7. click on finish

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 10

8. This is the default window you will see after you click on finish and
project name called serial will get open

9. Now click on this to create a new file

10. Type the program and save it .To compile the files first you need to add

files in your source for doing that right click on the source file and then

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 11

click on add existing source file

11. Now inside that source file their will be your file saved here the file

name I have used is urted

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 12

12. Now to build the file go to build and click on build

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 13

13. If your program has no errors it will be successfully build and it will
show the build window like this

TO BURN THE PROGRAM IN YOUR MICROCONTROLLER YOU NEED A BURNER
FOR BURNING WE USE AVR OPS-2

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 14

BURNING THE CODE

1. AVR osp-2

1. click on avr osp
2. The default avr osp 2 will look like this

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 15

3. First you need to configure your avr osp to check its connected to the
same com port or not and default Baud rate

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 16

4. you can manually select the device which you are using or else u can
even auto detect it

5. In device select which device you are using as here I am using

ATmega 16 I have selected that .Even you can Auto Detect your
device that option will automatically Detect your Device which you

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 17

are using

6. after pressing auto detect you will see this means that your
microcontroller has been detected and it read to flash program on to it

7. To flash the program on the Microcontroller You Browse the program

and Then click on program after click on the program it will flash the

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 18

program.

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 19

8. Browse your hex file where you have store

9. After clicking on program it will erase the previous content of the chip

and will flash the program on to the chip

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 20

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 21

10. After the completion of the flash it will compare the flash data if its
equal than it means that your flash is successful and it will show
“Equal”

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 22

2. SINA PROG 2.1

• If You are using ISP Atmega Programmer to Burn the code In Your Microcontroller than this
Programmer will surely come in handy

• Its simple to use and You can easily use the Microcontroller For External Crystal Frequency

http://researchdesignlab.com/isp-atmega-programmer.html

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 23

• If You Want to Change Internal Frequency Or want To use External Crystal Frequency than You
can change the Fuse.

• Here You Can Set Internal Frequency To
1. 1 MHz
2. 2 MHz
3. 4 MHz
4. 8 MHz

• If You want to use External Frequency than select Ext.Crys.

(If Ext Crys Doesn’t work properly than Try changing the BC valve as shown in Below Pic)

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 24

• Usually For Atmega 16 it comes out to be BC 32 KHz and For Atmega 32 BC 16 KHz but try with
Other Valve if this Doesn’t Works.

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 25

INTERFACE

1. LED BLINKING

Here we are blinking the led making it on and off for a certain duration using
AT Mega 16

Circuit diagram:

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 26

Program:
 # define F_CPU 1000000UL
 #define FOSC 16000000L //here we define the clock frequency
 #include <avr/io.h>
 #include <util/delay.h>

 int main(void)
 {

 DDRB = 0xFF; //Makes PORTC as Output
 While (1) //infinite loop
 {

 PORTB = 0xFF; //Turns ON All LEDs
 _delay_ms(1000); //1 second delay

 PORTB= 0x00; //Turns OFF All LEDs
 _delay_ms(1000); //1 second delay

 }
 }

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 27

2. LCD :

CIRCUIT DIAGRAM:

Program:

 # define F_CPU 1000000UL
 #include <avr/io.h>
 #include <util/delay.h>
 #include <string.h>

 //#define LCD_PORT PORTB
 #define RS PC0 //initialize register select as PC0 pin
 #define EN PC1 //initialize enable pin as PC1

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 28

 void CMD_WRT(unsigned char val)
 {

 PORTB=val;
 PORTC = PORTC & (~(1<<RS));
 _delay_ms(1); // here we provide a delay of 1 sec
 ORTC = PORTC | ((1<<EN)); //make enable pin high
 _delay_ms(1);
 PORTC = PORTC & (~(1<<EN)); //make enable pin low

 }

 void DATA_WRT(unsigned char ch)
 {

 PORTB = ch;
 PORTC = PORTC | ((1<<RS));//make register select pin high
 _delay_ms(1);
 PORTC = PORTC | ((1<<EN)); //make enable pin high
 _delay_ms(1);
 PORTC = PORTC & (~(1<<EN)); //make enable pin low
 }
 void LCD_WRT(char *string)
 {
 while(*string)
 DATA_WRT(*string++);//will write the strings

 }

 int main(void)
 {
 //setting the display of the lcd

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 29

 unsigned char CMD[]={0x38,0x01,0x0f,0x06,0x80},TEMP1,i;

 DDRB=0XFF; //make PORTB as output
 DDRC = 0xFF;//(1<<RS)|(1<<EN); //make PORTC as output
 _delay_ms(10); //provide the delay of 10ms

 for(i=0;i<5;i++)
 {
 TEMP1=CMD[i]; //it will place the command in cmd array
 CMD_WRT(TEMP1); //it will write all the cmd that is in the cmd array
 }

 while(1)
 {

 CMD_WRT(0X01); //clear display
 CMD_WRT(0X80); // blink the cursor in 1st row
 LCD_WRT(" --RDL--");//display RDL in lcd
 CMD_WRT(0XC0); //to use 2nd row of lcd
 LCD_WRT(" LCD_DISPLAY"); //display LCD_DISPLAY in lcd

 _delay_ms(1000); //delay of 1sec

 }
 return 0;
}

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 30

3. PULSE WIDTH MODULATION:
Program:

// program to change brightness of an LED

// demonstration of PWM

#include <avr/io.h>
#include <util/delay.h>

// initialize PWM
void pwm_init()
{
 // initialize timer0 in PWM mode

 TCCR0 |= (1<<WGM00)|(1<<COM01)|(1<<WGM01)|(1<<CS00);

 // make sure to make OC0 pin (pin PB3 for atmega32) as output pin
 DDRB |= (1<<PB3);
}

void main()
{
 uint8_t brightness;

 // initialize timer0 in PWM mode
 pwm_init();

 // run forever
 while(1)
 {
 // increasing brightness
 for (brightness = 0; brightness < 255; ++brightness)
 {

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 31

 // set the brightness as duty cycle
 OCR0 = brightness;

 // delay so as to make the user "see" the change in brightness

 _delay_ms(10);
 }

 // decreasing brightness

 for (brightness = 255; brightness > 0; --brightness)
 {
 // set the brightness as duty cycle

 OCR0 = brightness;

 // delay so as to make the user "see" the change in brightness

 _delay_ms(10);
 }

 // repeat this forever

 }
}

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 32

4. ADC :
Program:

 # define F_CPU 1000000UL
#include <avr/io.h>
#include <util/delay.h>
#include <string.h>
//#include <iom16.h>

//#define LCD_PORT PORTB
#define RS PC0 // connect register select pin to PC0
#define EN PC1 // connect enable pin to PC1
 #define LTHRES 500 //setting the threshold valve
 #define RTHRES 500

#include <stdlib.h>

void CMD_WRT(unsigned char val)
{

 PORTB=val; // initializing PORTB as input and passing valve onto it

 PORTC = PORTC & (~(1<<RS));//make RS pin low
 _delay_ms(1);
 PORTC = PORTC | ((1<<EN));// make EN pin high
 _delay_ms(1);
 PORTC = PORTC & (~(1<<EN));// make EN pin low

}

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 33

void DATA_WRT(unsigned char ch)
{

 PORTB = ch; //initializing PORTB as input and passing CMD onto it
 PORTC = PORTC | ((1<<RS)); // make RS pin high
 _delay_ms(1);
 PORTC = PORTC | ((1<<EN)); //make EN pin high
 _delay_ms(1);
 PORTC = PORTC & (~(1<<EN));// make EN pin low
}
void LCD_WRT(char *string)
{
 while(*string)
 DATA_WRT(*string++);

}

 // initialize adc
 void adc_init()
 {
 // AREF = AVcc
 ADMUX = (1<<REFS0); //initialize admux

 // ADC Enable and prescaler of 128

 // 16000000/128 = 125000
 ADCSRA = (1<<ADEN)|(1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
 } //ADEN means ADC enabled

 // read adc value
 int adc_read(char ch)

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 34

 {
 // select the corresponding channel 0~7
 // ANDing with '7' will always keep the value

 // of 'ch' between 0 and 7

 ch &= 0b00000111; // AND operation with 7
 ADMUX = (ADMUX & 0xF8)|ch; // clears the bottom 3 bits
 before ORing

 // start single conversion
 // write '1' to ADSC
 ADCSRA |= (1<<ADSC);

 // wait for conversion to complete
 // ADSC becomes '0' again
 // till then, run loop continuously

 while(ADCSRA & (1<<ADSC));

 return (ADC);
 }

int main(void)
{
 uint16_t adc_result0;//, adc_result1;

 char int_buffer[10]; //creating array of 10
 unsigned char CMD[]={0x38,0x01,0x0f,0x06,0x80},TEMP1,i;
 DDRB=0XFF;//set port b as output
 DDRC = 0xFF;//(1<<RS)|(1<<EN);
 _delay_ms(10);

 for(i=0;i<5;i++)
 {

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 35

 TEMP1=CMD[i]; //for each one cycle each command will be placed in
 that cmd array
 CMD_WRT(TEMP1);
 }
 adc_init();
 while(1)
 {
 //adc_result0 = adc_read(0); // read adc value at PA0
 adc_result0 = adc_read(1);

 itoa(adc_result0, int_buffer,10);

 CMD_WRT(0X01); //clear display
 CMD_WRT(0X80); // cursor on first line
 LCD_WRT(" --RDL--"); //display RDL
 CMD_WRT(0XC0); //cursor on next line
 LCD_WRT(int_buffer);

 _delay_ms(1000);

 //TODO:: Please write your application code
 }
 return 0;
}

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 36

5. KEYPAD :

 Block diagram:

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 37

Program:

#include<avr/io.h>
#include <avr/keypad.h> // to initialize the keypad

#define F_CPU 1000000UL
#include <util/delay.h> //header to use delay function

#define KEYPAD_PORT PORTC // connecting keypad to port c
#define KEYPAD_PIN PINC //initializing pins for keypad

#define LCD_DATA_PORT PORTB
#define LCD_CONT_PORT PORTD
#define LCD_RS PD0
#define LCD_RW PD1
#define LCD_EN PD2
#include <lcd.h> //header to initialize LCD commands

void main(void)
{
 DDRB=0xFF; //make PORTB as output
 DDRD=0X07; //make PORTD pin 0, 1, 2 as output
 DDRB=0X0F;
 PORTC=0xFF; //make PORTC as output
 unsigned char keypad_valve;
 lcd_init();

while(1)
{
 lcd_command_write(0x08); //display off cursor off
 lcd_string_write("PRESS ANY KEY");
 lcd_command_write(0xc0);//2nd line display
 keypad_valve=read_keypad();

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 38

 if(keypad_valve!=0xFF)
 {
 lcd_number_write(keypad_valve,10);//if key is pressed corresponding
 valve will be displayed
 lcd_data_write(' ');
 }
 else
 ;

 _delay_ms(300);
 }
 }

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 39

SERIAL COMMUNICATION:

What is the USART?
The vast majority of devices in the current AVR family lineup contain a
USART hardware subsystem. The USART hardware allows the AVR to
transmit and receive data serially to and from other devices - such as a
computer or another AVR.

The USART transmission system differs to most other digital busses in that
it does not utilize a separate pin for the serial clock. An agreed clock rate is
preset into both devices, which is then used to sample the Rx/Tx lines at
regular intervals. Because of this, the USART requires only three wires for
bi-directional communication (Rx, Tx and GND).

Setting up the Hardware
• Connect your USART to a computer via the Com port.
• You need to first identify which pins of your AVR(ATmega 16) are

responsible for serial communication.
• For ATmega 16 Pin 14 and Pin 15 are used for receiving and

transmission.
• Connect tx pin of usart to rx pin of ATmega 16 and rx pin of usart to

the tx pin of the ATmega 16 .
• Now to see the transmitted word back in pc you need to use

HyperTerminal (it’s a free software you need to download it)
• set the Baud rate in the HyperTerminal

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 40

Setting up HyperTerminal

1. open the HyperTerminal

2. Add name here I have added serial

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 41

3. Select your com port which you are using and press ok (to check

the com port go to device manger and check in which com port is the usart connected)

4. select the baud rate that you have set or just click Restore
default it will set the default valve and press ok

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 42

5. serial HyperTerminal will get open

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 43

Initializing the USART
 First off, you need to enable both the USART's transmission and
reception circuitry. For the MEGA16, these are bits named RXEN and TXEN, and
they are located in the control register UCSRB. When set, these two bits turn on
the serial buffers to allow for serial communications

 Code:

int main (void)

{

UCSRB = (1 << RXEN) | (1 << TXEN); // Turn on the transmission and reception circuitry

}

 Next, we need to tell the AVR what type of serial format we're using.
Looking again at the MEGA16 datasheet, we can see that the bits responsible for
the serial format are named UCSZ0 to UCSZ2, and are located in the USART
control register C named UCSRC.

 Code:

UCSRC = (1 << URSEL) | (1 << UCSZ0) | (1 << UCSZ1); // Use 8-bit character sizes - URSEL bit
set to select the UCRSC register

 The last thing to set for basic serial communications is the baud rate
register. The baud rate register is 16-bit, split into two 8-bit registers as is the case
with all 16-bit registers in the AVR device family. For this the baud valve need to
be found for that we have a formula

BaudValue = (((F_CPU / (USART_BAUDRATE * 16))) - 1)

Where F_CPU is your AVR's system clock frequency (in Hz), and USART_BAUDRATE is the desired
communication baud rate.
Given my example project using a system clock of 7372800Hz and a baud rate of 9600, our formula
gives:

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 44

BaudValue = (((F_CPU / (USART_BAUDRATE * 16UL))) - 1) BaudValue = (7372800 / (9600 * 16) - 1)
BaudValue = (7372800 / 153600 - 1)
BaudValue = (48 - 1)
BaudValue = 47

 This avoids "magic numbers" (unexplained constants) in our source code,
and makes changing the baud rate later on very easy - just change the
BAUD_RATE macro value. Now, we need to load this into the baud rate registers,
named UBRRH (for the high byte) and UBRRL (for the low byte). This is simple
via a simple bit shift to grab the upper eight bits of the BAUD_PRESCALE
constant:

UBRRH = (BAUD_PRESCALE >> 8); // Load upper 8-bits of the baud rate value into the high byte
of the UBRR register

UBRRL = BAUD_PRESCALE; // Load lower 8-bits of the baud rate value into the low byte of the
UBRR register

Sending and receiving data

 We do this by the special register named UDR - short for "USART I/O
Data Register”. On the MEGA16, the Transmission Complete flag is located in the
control register UCSRA, and it is named TXC. Using this information we can
construct a simple wait loop which will prevent data from being written to the
UDR register until the current transmission is complete.

UDR = ByteToSend; // Send out the byte value in the variable "ByteToSend"

while ((UCSRA & (1 << TXC)) == 0) {}; // Do nothing until transmission complete flag set

 However this is non-optimal. We spend time waiting after each byte which
could be better spent performing other tasks - better to check before a transmission
to see if the UDR register is ready for data. We can do this by checking the
USART Data Register Empty flag instead (called UDRE), also located in the
UCSRA control register of the MEGA16

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 45

while ((UCSRA & (1 << UDRE)) == 0) {}; // Do nothing until UDR is ready for more data to be
written to it

UDR = ByteToSend; // Send out the byte value in the variable "ByteToSend"

 Now we can move on to receiving data. we need to check to see if we have
received a byte.
To do this, we can check the USART Receive Complete (RXC) flag to see if it is
set. Again, this is located in the UCSRA control register of the MEGA16:

while ((UCSRA & (1 << RXC)) == 0) {}; // Do nothing until data have been received and is ready
to be read from UDR

ReceivedByte = UDR; // Fetch the received byte value into the variable "ReceivedByte"

CODE:

#include <avr/io.h>

#include <avr/delay.h>

#define F_CPU ((unsigned long)8000000)

#define F_OSC 8000000// for 8mhz

#define USART_BAUDRATE 9600

#define BAUD_PRESCALE (((F_CPU / (USART_BAUDRATE * 16UL))) - 1)

unsigned char

int main (void)

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 46

{

 char ReceivedByte;

 UCSRB = (1 << RXEN) | (1 << TXEN); // Turn on the transmission and reception
circuitry

 UCSRC = (1 << URSEL) | (1 << UCSZ0) | (1 << UCSZ1); // Use 8-bit character sizes

 UBRRH = (BAUD_PRESCALE >> 8); // Load upper 8-bits of the baud rate value into the
high byte of the UBRR register

 UBRRL = BAUD_PRESCALE; // Load lower 8-bits of the baud rate value into the low byte
of the UBRR register

 for (;;) // Loop forever

 {

 while ((UCSRA & (1 << RXC)) == 0) {}; // Do nothing until data have been
received and is ready to be read from UDR

 ReceivedByte = UDR; // Fetch the received byte value into the variable
 "ByteReceived"

 //_delay_ms(1000);

 while ((UCSRA & (1 << UDRE)) == 0) {}; // Do nothing until UDR is ready for
more data to be written to it

 UDR = ReceivedByte; // Echo back the received byte back to the computer

 }

}

 Atmega 16/32 Microcontroller

www.researchdesignlab.com Page 47

Related Products:

Atmega 16/32/64 Project Board Atmega 16/32/64 Development Board-USB

Product Code: G89S52 Product Code: ATM-U

 Atmega Programmer-USB ISP Atmel Programmer

Product Code: AVR Product Code: UAB

http://researchdesignlab.com/development-baord/avr-and-atmega/atmega-development-board-usb.html
http://researchdesignlab.com/development-baord/avr-and-atmega/atmega16-project-board.html
http://researchdesignlab.com/development-baord/avr-and-atmega/atmega-development-board-usb.html
http://researchdesignlab.com/development-baord/avr-and-atmega/atmega-programmer-usb.html
http://researchdesignlab.com/development-baord/atmel/atmel-atmega-programmer.html

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

010101010101010101001

Research
Design Lab

www.researchdesignlab.com
Email: sales@researchdesignlab.com I www.researchdesignlab.com

An ISO 9001- 2008 Certified Company

Atmega Development Board

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

1. Power supply, 5V-12V
2. 40 pin ZIF socket for IC mount.
3. ISP connector*
4. Reset
5. Node connector
6. 4x1 7 segment display
7. 26 pin raspberry connector
8. Arduino Shield footprint
9. ULN 2803 driver
10. I2C bus
11. SPI bus
12. XBEE footprint/XBEE Adaptor module
13. FT232 breakout board connector
14. DC 3.3V connectors

15. DB-9 female connector
16. 8x1 LED's
17. 8 way DIP switch
18. RTC Module
19. EEPROM
20. 2x5x2 jumper node.
21. DC 5V connectors
22. Analog to Digital output
23. 4x1 keypad
24. 16x2 LCD connectors
25. Node connector
26. 4x4 Matrix Keypad
27. DC 12V connectors
28. Power ON switch

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

All digital circuits require regulated power supply. Here is
a simple power supply circuit diagram used on this board.
You can use AC or DC source (12V) which converts into
regulated 5V which is required for driving the
development board circuit.

Power supply, 5V-12V

Select the IC's from the given list and mount on the ZIF socket. ZIF socket pin maps out PORT1
PORT2 PORT3 PORT4 for easy making connections for the rest of the circuit. Port 1 is enabled with
pull up circuit and also connected ISP for easy on board Programming.

1. 40 pin ZIF socket for IC mount & ISP connector*

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

2. Reset

Resets your microcontroller Node connector is an additional on board
connection extender or 1 connection
IN and 1 connection OUT

One seven segment digit consist of 7+1 LEDs which are arranged in a specific formation which
can be used to represent digits from 0 to 9 and even some letters. One additional LED is used for
marking the decimal dot, in case you want to write a decimal point in the desired segment.

3. Node connector

4. 4 digit 7 segment display

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

26 Pin Raspberry Pi connector is an easy way
for making connections with Raspberry Pi
along with this development board.

Arduino Shield footprint is provided in the
board to mount different types of Arduino
compatible shields on this development board.

IC ULN2803 consists of octal high voltage, high current darlington transistor arrays. The eight NPN
Darlington connected transistors in this family of arrays are ideally suited for interfacing between
low logic level digital circuitry (such as TTL, CMOS or PMOS/NMOS) and the higher
current/voltage requirements of lamps, relays, printer hammers or other similar loads for a
broad range of computer, industrial, and consumer applications.

5. 26 pin Raspberry Pi connector 6. Arduino Shield footprint

7. ULN 2803 driver

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

• Eight Darlingtons with Common Emitter.
• Open–collector outputs.
• Free wheeling clamp diodes for
 transient suppression.
• Output Current to 500 mA.
• Output Voltage to 50 V.
• Inputs pinned opposite outputs to
 simplify board layout.

The ULN 2803 IC consists of eight NPN
Darlington connected transistors (often
called a Darlington pair). Darlington pair
consists of two bipolar transistors such
that the current amplified by the first is
amplified further by the second to get a
high current gain β or hFE. The figure
shown below is one of the eight Darlington
pairs of ULN 2803 IC.

Now 2 cases arise:-
Case 1: When IN is 0 volts.
Q1 and Q2 both will not conduct as there is
no base current provided to them. Thus,
nothing will appear at the output (OUT).

Case 2: When IN is 5 volts.
Input current will increase and both transistors Q1 and Q2 will begin to conduct. Now, input
current of Q2 is combination of input current and emitter current of Q1, so Q2 will conduct more
than Q1 resulting in higher current gain which is very much required to meet the higher current
requirements of devices like motors, relays etc. Output current flows through Q2 providing a
path (sink) to ground for the external circuit that the output is applied to. Thus, when a 5V input
is applied to any of the input pins (1 to 8), output voltage at corresponding output pin (11 to 18)
drops down to zero providing GND for the external circuit. Thus, the external circuit gets
grounded at one end while it is provided +Vcc at its other end. So, the circuit gets completed and
starts operating.

Features Working

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

One IC that wants to communicate to another must: (Protocol)

1) Wait until it sees no activity on the I2C bus. SDA and SCL are both high. The bus is 'free'.

2) Put a message on the bus that says 'its mine' - I have STARTED to use the bus. All other ICs then
LISTEN to the bus data to see whether they might be the one who will be called up
(addressed).

3) Provide on the CLOCK (SCL) wire a clock signal. It will be used by all the ICs as the reference
time at which each bit of DATA on the data (SDA) wire will be correct (valid) and can be used.
The data on the data wire (SDA) must be valid at the time the clock wire (SCL) switches from
'low' to 'high' voltage.

4) Put out in serial form the unique binary 'address'(name) of the IC that it wants to
communicate with.

5) Put a message (one bit) on the bus telling whether it wants to SEND or RECEIVE data from the
other chip. (The read/write wire is gone!)

6) Ask the other IC to ACKNOWLEDGE (using one bit) that it recognized its address and is ready to
communicate.

7) After the other IC acknowledges all is OK, data can be transferred.

8) The first IC sends or receives as many 8-bit words of data as it wants. After every 8-bit data
word the sending IC expects the receiving IC to acknowledge the transfer is going OK.

9) When all the data is finished the first chip must free up the bus and it does that by a special
message called 'STOP'. It is just one bit of information transferred by a special 'wiggling' of the
SDA/SCL wires of the bus.

8. I2C bus

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

Serial to Peripheral Interface (SPI) is a hardware/firmware communications protocol developed
by Motorola and later adopted by others in the industry. Microwire of National Semiconductor is
same as SPI. Sometimes SPI is also called a "four wire" serial bus.

The Serial Peripheral Interface or SPI-bus is a simple 4-wire serial communications interface used
by many microprocessor/microcontroller peripheral chips that enables the controllers and
peripheral devices to communicate each other. Even though it is developed primarily for the
communication between host processor and peripherals, a connection of two processors via SPI is
just as well possible.

The SPI bus, which operates at full duplex (means, signals carrying data can go in both directions
simultaneously), is a synchronous type data link setup with a Master / Slave interface and can
support up to 1 megabaud or 10Mbps of speed. Both single-master and multi-master protocols are
possible in SPI. But the multi-master bus is rarely used and look awkward, and are usually limited
to a single slave.

The SPI Bus is usually used only on the PCB. There are many facts, which prevent us from using it
outside the PCB area. The SPI Bus was designed to transfer data between various IC chips, at very
high speeds. Due to this high-speed aspect, the bus lines cannot be too long, because their
reactance increases too much, and the Bus becomes unusable. However, its possible to use the SPI
Bus outside the PCB at low speeds, but this is not quite practical.

The peripherals can be a Real Time Clocks, converters like ADC and DAC, memory modules like
EEPROM and FLASH, sensors like temperature sensors and pressure sensors, or some other devices
like signal-mixer, potentiometer, LCD controller, UART, CAN controller, USB controller and
amplifier.

9. SPI bus

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

All XBeeZNet 2.5 modules can be identified by their unique 64-bit addresses or a user-
configurable ASCII string identifier The 64-bit address of a module can be read using the SH and SL
commands. The ASCII string identifier is configured using the NI command.

To transmit using device addressing, only the destination address must be configured. The
destination address can be specified using either the destination device's 64-bit address or its NI-
string. The XBee modules also support coordinator and broadcast addressing modes. Device
addressing in the AT firmware is configured using the DL, DH, or DN commands. In the API
firmware, the ZigBee Transmit Request API frame (0x10) can be used to specify destination
addresses.

To address a node by its 64-bit address, the destination address must be set to match the 64-bit
address of the remote. In the AT firmware, the DH and DL commands set the destination 64-bit
address. In the API firmware, the destination 64-bit address is set in the ZigBee Transmit Request
frame. ZigBee end devices rely on a parent (router or coordinator) to remain awake and receive
any data packets destined for the end device. When the end device wakes from sleep, it sends a
transmission (poll request) to its parent asking if the parent has received any RF data destined for
the end device. The parent, upon receipt of the poll request, will send an RF response and the
buffered data (if present). If the parent has no data for the end device, the end device may return
to sleep, depending on its sleep mode configuration settings. The following figure demonstrates
how the end device uses polling to receive RF data through its parent.

10. XBEE footprint/ XBEE Adaptor module

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

A s t a n d a r d F T 2 3 2
breakout board from
researchdesignlab.com
could be used to interface
on these connectors,
whose other end is
connected to a USB.

These connectors provide on board
3.3V DC connections.

RS-232 is a standard communication protocol for linking computer and its peripheral devices to
allow serial data exchange. In simple terms RS232 defines the voltage for the path used for data
exchange between the devices. It specifies common voltage and signal level, common pin wire
configuration and minimum, amount of control signals.

11. Ft232 breakout
 board connector

12. DC 3.3V connectors

13. DB-9 female connector

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

LED's are used to indicate
something, whether any pin is high
or indicating the output for many
purposes like indicating I/O status
or program debugging running
state. We have 8 led outputs on
board which can be used by the
programmer as per the requirement
for testing and development.

DIP switches are an alternative to jumper blocks. Their main advantages are that they are
quicker to change and there are no parts on lose.

The DS1307 Serial Real Time Clock is a low power, full BCD clock/calendar plus 56 bytes of
nonvolatile SRAM. Address and data are transferred serially via a 2-wire bi-directional bus. The
clock/calendar provides seconds, minutes, hours, day, date, month, and year information. The
end of the month date is automatically adjusted for months with less than 31 days, including
corrections for leap year. The clock operates in either the 24-hour or 12-hour format with AM/PM
indicator. The DS1307 has a built-in power sense circuit which detects power failures and
automatically switches to the battery supply.

14. 8x1 LED's

15. 8 way DIP switch

16. RTC Module

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

The DS1307 operates as a slave device on the serial bus. Access is obtained by implementing a
START condition and providing a device identification code followed by a register address.
Subsequent registers can be accessed sequentially until a STOP condition is executed. When VCC
falls below 1.25 x VBAT the device terminates an access in progress and resets the device address
counter. Inputs to the device will not be recognized at this time to prevent erroneous data from
being written to the device from an out of tolerance system. When VCC falls below VBAT the
device switches into a low current battery backup mode. Upon power up, the device switches
from battery to VCC when VCC is greater than VBAT +0.2V and recognizes inputs.

Features:
1. 56 byte nonvolatile RAM for data storage
2. 2-wire serial interface
3. Programmable square wave output signal
4. Automatic power-fail detect and switch circuitry
5. Consumes less than 500 nA in battery backup mode with oscillator running
6. Optional industrial temperature range -40°C to +85°C
7. Available in 8-pin DIP or SOIC
8. Recognized by Underwriters Laboratory

PIN DESCRIPTION
1. VCC - Primary Power Supply
2. X1, X2 - 32.768 kHz Crystal
Connection
3. VBAT - +3V Battery Input
4. GND - Ground
5. SDA - Serial Data
6. SCL - Serial Clock
7. SQW/OUT - Square
wave/Output Driver

Operation

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

IC, EEPROM I2C 4K, 24C04, DIP8

Memory Size: 4Kbit

Memory Configuration: 512 x 8

Interface Type: I2C, Serial

Clock Frequency: 400kHz

Supply Voltage Range: 2.5V to 5.5V

Memory Case Style: DIP

No. of Pins: 8

Operating Temperature Range: -40°C to

+85°C

SVHC: No SVHC (19-Dec-2011)

Base Number: 24

Device Marking: M24C04

IC Generic Number: 24C04

Interface: I2C

Interface Type: Serial, I2C

Logic Function Number: 24C04

Memory Configuration: 512 x 8

Memory Size: 4Kbit

Memory Type: EEPROM

Memory Voltage Vcc: 2.5V

Operating Temperature Max: +85°C

Operating Temperature Min: -40°C

Package / Case: DIP

Supply Voltage Max: 5.5V

Supply Voltage Min: 2.5V

Termination Type: Through Hole

Voltage Vcc: 2.5V

18. 2x5x2 jumper node

17. EEPROM

Node connector is an additional on board connection
extender or 1 connection IN and 1 connection OUT

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

These connectors provide on board 5V
DC connections.

The Potentiometer Option allows the user to adjust the voltage reference by rotating a
potentiometers dial. Turning the potentiometer changes the voltage reference making it easier
to adjust the motor speed and also to set the duty cycle for PWM values (via programming).

Switches are mainly used to
switch the controls of a
module. We have four
switches on board which can
be used by the programmer
as per the requirement for
testing and development.

19. DC 5V connectors

20. Potentiometer

21.4x1 keypad

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

LCD screen consists of two lines with 16 characters each. Each character consists of 5x7 dot
matrix. Contrast on display depends on the power supply voltage and whether messages are
displayed in one or two lines. For that reason, variable voltage 0-Vdd is applied on pin marked as
Vee. Trimmer potentiometer is usually used for that purpose. Some versions of displays have built
in backlight (blue or green diodes). When used during operating, a resistor for current limitation
should be used (like with any LE diode). LCD Connection Depending on how many lines are used for
connection to the microcontroller, there are 8-bit and 4-bit LCD modes. The appropriate mode is
determined at the beginning of the process in a phase called “initialization”. In the first case, the
data are transferred through outputs D0-D7 as it has been already explained. In case of 4-bit LED
mode, for the sake of saving valuable I/O pins of the microcontroller, there are only 4 higher bits
(D4-D7) used for communication, while other may be left unconnected.

Consequently, each data is sent to LCD in two steps: four higher bits are sent first (that normally
would be sent through lines D4-D7), four lower bits are sent afterwards. With the help of
initialization, LCD will correctly connect and interpret each data received. Besides, with regards
to the fact that data are rarely read from LCD (data mainly are transferred from microcontroller
to LCD) one more I/O pin may be saved by simple connecting R/W pin to the Ground. Such saving
has its price. Even though message displaying will be normally performed, it will not be possible
to read from busy flag since it is not possible to read from display.

Features:
1. Can display 224 different symbols.
2. Low power consumption.
3. 5x7 dot matrix format.
4. Powerful command set and user produced characters.

Fig: Circuit connections of LCD

22. 16x2 LCD connectors

10k

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

1. Gnd:- Power supply ground
2. VCC:-+5v Power supply input
3. RS:- Register Select

Node connector is an additional on board connection extender or 1 connection IN and 1
connection OUT

4. R/W:- Read/Write pin
5. En:-Enable pin
6. D0-D7:- Data lines

Pin Description

23. Node connector

RESEARCH DESIGN LABS | VOLUME 1, ISSUE 1 WWW.RESEARCHDESIGNLAB.COM

In a 4x4 matrix keypad eight Input/Output ports are used for interfacing with any
microcontrollers. Rows are connected to Peripheral Input/Output (PIO) pins configured as
output. Columns are connected to PIO pins configured as input with interrupts.

FEATURES
1. Contact debouncing.
2. Easy to interface.
3. Interfaces to any microcontroller or microprocessor.
4. Data valid output signal for interrupt activation.

PIN DETAILS
pin 1-4: R0-R3:- Rows
pin 5-8: C0-C3:- Columns

24. 4x4 Matrix Keypad

These connectors provide on
board 12V DC connections.

25. DC 12V connectors

Programming Codes:

• LED BLINK
http://researchdesignlab.com/8051-i/o-code

• LCD
http://researchdesignlab.com/8051-lcd-code

• KEYPAD
http://researchdesignlab.com/8051-keypad-code

• UART
http://researchdesignlab.com/8051-uart-code

• RTC
http://researchdesignlab.com/8051-rtc-code

• EEPROM
http://researchdesignlab.com/8051-eeprom-code

• ADC
http://researchdesignlab.com/8051-adc-code.html

• 7 Segment Display
http://researchdesignlab.com/7-segment-atmel-code.html

	BOOKPDF.pdf (p.1-48)
	OVERVIEW:
	PORTS:

	PIN DESCRIPTION:
	WRITING THE CODE
	1. AVR STUDIO

	BURNING THE CODE
	1. AVR osp-2
	2. SINA PROG 2.1

	INTERFACE
	SERIAL COMMUNICATION:
	What is the USART?
	Setting up the Hardware
	Setting up HyperTerminal
	Initializing the USART
	Sending and receiving data
	CODE:

	Atmega Development Board.pdf (p.49-65)

